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Rate Processes in Dissipative Systems: 50 Years after Kramers
Discussion Meeting of the Deutsche Bunsen-Geselischaft fur Physikalische Chemie

under the auspices of the Deutsche Physikalische Gesellschaft
NATO Advanced Research Workshop (ARW. 890521)

Reactive processes often take place in the presence of ran- diffusion and Josephson junctions. The participation was
dom interactions of the reacting system with its environ- really international, 15 countries being represented. The or-
ment. The article by H. A. Kramers, published in April 1940 ganizers are grateful to those organisations, which helped
in, Physica, Vol. VII, pages 284-304, represented a mile- with financial support such as NATO, the DFG, and the
stone in the quantitative analysis. It provides a description Office of Naval Research (USA), the Evangelische Akademie
for the "low damping" and the "high damping" range. It at Tutzing, which provided the most beautiful facilities of
includes such important theories as the transition state the- Tutzing castle, good weather, and competent staff, their co-
ory or the Smoluchowski model of diffusion-controlled workers, who assured a smooth progress of the meeting, the
processes. Since phenomena of the considered kind are en- musicians, who concluded the program with a heartening
countered in many places in physics, chemistry and mole- concert, and, last not least, all colleagues, who came and
cular biology, it appeared most appropriate to bring to- took part in the lively discussions.
gether scientists from these different fields at the occasion
of the fiftieth anniversary of Kramers' seminal paper. The B. J. Berne (New Yoik), H. Grabert (Essen), P. Hiinggi
goal of the endeavor was to compare the progress of formal (Augsburg), E. Pollak (Rehovot), and . Troe (Gdttingen)
solutions of the Kramers problem, to identifythe common
principles and the specific differences of the various fields of Obviously, the present discussion meeting should also re-
application. member the person of H. A. Kramers. We are grateful that

By its multidisciplinary character, this discussion meeting Professor N. G. van Kampen, a former student of Kramers,
brought together colleagues from such distant fields as pho- undertook this task and presented the following dinner
tobiology, high pressure chemical kinetics, low temperature speech.

Peter Hiinggi, Jiirgen Troe

Remembering Kramers
(Dinner Speech)

N. G. vai Kampen
Instituut voor Theoretische Fysica, Rijksuniversiteit te Utiecht, Postbus 80006, 3508 TA Utrecht, The Netherlands

lhis dinner speech, presented at the Discussion Meeting "50 years after Kramers", describes personal
- memories to H. A. Kramers.

Ladies and gentlemen, whole of physics was their field rather than succumbing to

A good paper begins by formulating the problem. Let me the modern pressure to specialize. To deal with his life would
tell you my problem. In a letter sent to me by the organizers amount to reciting parts of the biography written by Max
of this conference I was asked, and I quote. "to present a Dresden [1], who has made a thorough study of it. So what
dinner speech covering a historical overview of'the life and am I supposed to do? In this dilemma I have chosen the
impact of Kramers' work. In view of your connection with golden mean, and shall talk about myself.
the family of Kramers the organizers feel that you wNould be When Kramers wrote his paper on Brownian motion in
the most appropriate person to present such a talk". 1940 1 did not know him yet. Only in 1945, after the war,

What I am supposed to do? To deal with his work - in was it possible for me to go to his lectures without -risk of
historical perspective - would make it a very long dinner, life and limb. Unfortunately I wNas not very assiduous, be-
Kramers was still one of those physicists who felt that the ,ause the newly iecoxered freedom gate birth to an exu-
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2i6 N. G. van Kampen:,Remembering Kramers

berant student's life. Once [had a celebration that lasted all imous report. I am proud to know that the same mild way
night and after I came home in the morning I dreamt that of remonstrating used earlier to get me back to work was
I was at a lecture, listening.to Kramers. Unfortunately, when also instrumental in subduing Gromyko. The subcommit-
I woke up it turned out to be true. In an audience of six tee's report later disappeared in the political hassle, which
'that cannot go unnoticed. But when I met Kramers later goes to show that one should never waste one's time on
that day in the street he merely asked me mildly when I committees setup by politicians.
intended.to begin studying seriously. Let me go back to the year 1916, when Kramers, not yet

His own teacher Ehrenfest had been more drastic. He 22 years old, took the train to Copenhagen, to study with
refused to accept Kramers as a Ph. D. student because Kra- Niels Bohr. There he remained 10 years, wrote a Ph. D.
mers had occasionally skipped a lecture. He told him to thesis, married a Danish wife, and played a pivotal role in
become a, high-school teacher. Although in those days that the development of quantum mechanics. In 1924 and 1925
was quite a respectable position, in the eyes of Ehrenfest it he managed by means of-an unparalleled tour de force to
was the-bottom rung of the scientific ladder. Kramers did construct a quantum mechanical formula for the scattering
become a teacher, but his mind was not in it. He often of light by an atom, even though quantum mechanics did
arrived late. When the rector of the school expressed his not yet exist. He did this by an inimitable combination of
displeasure he answered: Don't forget that'I teach them in knowledge and insight; others might say by hook and by
half an hour as much as you do in an hour. Nonetheless crook. It was published in a paper, which I am. afraid few
the same rector helped him to get away and try his luck as people have ever understood - but for the resulting for-
a research physicist in Copenhagen. mula. Although the paper carried the name of Heisenberg

The purpose of the anecdote about my falling asleep is to as joint author it was very much Kramers' work. The im-
allow you to discount what I am now going to say. In my portance of this Kiamers-Heisenberg dispersion formula
experience Kramers was not a good lecturer, He was think- was not confined to the special problem of light scattering.
ing of too many aspects of his subject, and he would not It served as a stepping stone from which Heisenberg arrived
simplify as a first approximation suitable for students. This at the general formulation of quantum mechanics, and
became painfully'clear in a series of popular lectures he gave thereby stole the show. Kramers' role in the early devel-
in the fall of 1945. Also his book on quantum mechanics, opment of quantum mechanics is often forgotten. I hope
on which he spent so much energy, failed as a textbook. It that Dresden's book will be instrumental in putting the rec-
contains numerous treasures, but a beginning student can ord straight.
easily get drowned in it - I can tell you. A case inpoint is Yet Kramers was never satisfied by the way in which
the way he treats field quantization. He conscientiously ex- quantum mechanics treats the interaction between the elec-
plains it as a change in representation, but then dismisses tron and the electromagnetic field. Each electron, when con-
the by no means simple algebra as too trivial to bother sidered as a point particle, is surrounded by a field of infinite
about. That is a pity: if the book had been more pedagogical strength and infinite energy, namely its own electrostatic
it might have prevented the prevailing misconception of sec- field. This appeared already.in the classical theory of Lor-
ond quantization among field theorists. entz. Lorentz eliminated the infinite energy by adding it to

Kramers was not an argumentative debater, on the con- the bare mass of the electron to give a combined mass -
trary. When you would bring up a point of discussion, either which is the mass observed in experiments. Kramers' aim
in physics or otherwise, he would listen attentively, think was to eliminate the entire self field of the eiectron by treat-
about it, and carefully formulate an answer. No wonder that ing it as part and parcel of the electron. He gave a talk
he was universally liked and trusted - although it is true about his idea at the Shelter Island conference in 1947 and
that sometimes his answer would be couched in rather sib- thereby launched the idea of renormalization in quantum
ylline terms and those who knew them could detect an ironic mechanics. This idea caught fire, and Bethe, on his way
twinkling in his eyes. Once he told me that in his opinion home, applied it in a rough calculation of the radiative cor-
one should give every person a religion that did not fit him. rection of the energy levels of an atom. "He works so much
At the time I took it to mean that one should try to keep faster than I", Kramers once ruefully said to me, but then
the balance, but later I realized that he may also have meant his own aim was more ambitious and, moreover, he was
something entirely different. No wonder either, that his as- overburdened by his duties in the AEC. And his health was
sistance was often requested when a difficult situation arose beginning to fail.
and feelings got excited. Unfortunately that sometimes He ended up by dumping his calculations into my lap as
meant a heavy toll on his time and energy, as in the following a subject for my :hesis. At first I was rather overwhelmed
case. by all these yellow pad sheets covered with calculations

In 1946 he was appointed by the government as a sci- without text. At the time it was not customary to bother
entific advisor and alternate to the Dutch representatihe in your professor and of course Kramers had man) other ob-
the Atomic Energy Committee of the United Nations. While ligations, so we talked about it roughl) once exery six weeks.
serving in that capacity he was elected as chairman of the Nor should one expect to be encouraged by approbation
Scientific and Technological Subcommittee, against the op- or praise. I remember that once Kramers said to me that
position of Gromyko. He managed to gently steer the sub- he had receihed some reprints from de Broglie, since he was
committee to a satisfactor) conclusion in the form of a unan- going to Nisit Paris, he asked me to read them and tell him
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the contents. After a week's struggle I gave up and told him by the mathematical problem. Much is said about it during
that either I was a fool or de Broglie. He replied that he this meeting and I only want to make a few comments.
guessed that it was de Broglie. This was the only explicit No potential having a well and a barrier is known for
expression of appreciation I received during my thesis work. which the Kramers equation can be solved analytically. The
Nonetheless he managed to convey the feeling of a shared game is therefore to disign an approximation method. The
effort and a common aim, which was more stimulating than remarkable thing is that Kramers appears to have done

,words ofpraise, and did more to create ties of friendship, almost everything that can be done. Although his results
In 1950 Kramers arranged for me to go to the Niels Bohr are not as complete as one might wish, the half century since

Institute. The international community of scientists was tre- his paper was published has taught us that it is very hard
mendously stimulating, but the contact with my thesis ad- to find essential improvements. It is a typical Kramers paper,
visor was reduced to his occasional visits to Denmark. Once, containing many gems, but as a whole somewhat confusing.
while he spent a short vacation at Bohr's cottage at Tisvilde, It needs a careful perusal and that may well be the reason
he asked me to come .there for the weekend to discuss my that it was not well known for many years.
work. When I arrived on bicycle from Copenhagen, he said: Thefirst gem is the discovery of the curious fact that it
you are tired and hot, let us first go for a swim. We went is sufficient to investigate the stationary case, even though
to the beach, walked into the sea, but by the time the water one is interested in a decay rate. Note that this is not an
had reached my navel Kramers said: in your chapter IV approximation, but is precisely correct within the margin of
about the Raman effect.... And so we stood there discussing uncertainty inherent in the very concept of escape time.
for a long time. Although I never thought that scientific The second gem is that in the limit of large friction the
discussions should be confined to office hours and appro- equation reduces to a diffusion equation in coordinate space
priate surroundings, it had not occurred to me that I would alone. This requires the elimination of the momentum of the
have to defend my thesis halfway submerged in the Kattegat. particle, which Kramers achieved by means of an ingenious

In 1926 Kramers returned to the Netherlands to become step. This has now become an industry under the title "ad-
a professor at Utrecht. He became more concerned with the iabatic elimination of fast variables".
applications of quantum mechanics to various fields, such Thirdly, having obtained this one-dimensional diffusion
as solid state and in particular magnetism. I cannot review equation Kramers found the mean first-passage time by de-
these many and varied topics he dealt with, hut let me men- riving a formula for it, which is now common knowledge,
tion as a few highlights: the Kramers-Kronig relations, the although it is occasionally rediscovered.
transfer matrix, and the work on polymers. The publications In order to treat the case that the friction is not large he
can all be found in the Collected Works. used a fourth ingredient: he decomposed the range of the

It is a pity that Dresden's book had no room for all this, coordinate into one region around the top of the potential
although a short account has appeared in Physics Today, barrier, and another region covering the potential well. This
September 1988. Allow me to insert here a word of criticism has now become a standard trick of singular perturbation
addressed at Dresden. He emphasizes that in many subjects theory. It enables one to apply different expansions in both
Kramers did all the groundwork but failed to make the regions, provided one can fit them smoothly together so as
decisive step. There is a grain of truth in it, but to consider to get an approximation that covers the whole range.
that as a basic flaw of Kramers as a physicist seems to me Thefifth ingredient is a real gem: the very ingenious con-
unfair. Does one blame Lorentz for not taking the final step struction of a solution in the barrier region. It is true that
to relativity? Einstein for not going on to discover quantum this is only one special solution, but it is precisely the one
mechanics? Columbus for stopping half way on his voyage he needs: no incident particles from infinity, and thermal
to india? Rather I think that it is in the nature of things equilibrium on the side of the well. Hence it can be attached
that those who laboriously lay the foundations for the new smoothly to the equilibrium distribution inside the well.
development no longer have the freshness of mind needed Kramers also realized that for very small friction the flue-
to discern an entirely new approach. tuations might not be able to maintain the equilibrium in

When in 1934 Kramers was appointed in Leiden as the the well; rather the leakage across the barrier would deplete
successor to Ehrenfest his interest in statistical mechanics the high energy tail of the distribution. For this case he
was already fully developed. He admired the mathematical introduced his sixth device. In the limit of low friction the
elegance of the Gibbs approach, but was equally conversant particle in the well oscillates roughly with a constant energy.
with the more physical ideas of Boltzmann and Ehrenfest. It is therefore possible to average out the phase. This leads
His views are reflected in the textbook that his student ter to a one-dimensional diffusion equation in the energy scale,
Haar wrote in 1954. It is in the vein of the Boltzmann ap- from which it is easy to compute the average time needed
proach that he wrote down the equation for the probability to reach the energy of the top of the barrier.
density in phase space of a Brownian particle in a field of There are tNNo difficulties with this low friction limit. First
force and formulated the escape problem. The motivation it is manifestl) correct if the barrier is a sharp cusp, but if
wvas that this might describe chemical dissociation, as sug- it has a smooth top the motion near the top is slowi and
gested by Christiansen, and perhaps also the recently dis- phase averaging is problematic. The second difficult) is that
covered nuclear fusion. But it is clear that these applications there is no bridge between this result and the previous one
mainly serve as an excuse, and that Kramers is fascinated for large and intermediate friction. Kramers confesses that
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he hasnot foundit. Many authors have tried, and' itis- the Reference
-task-of this conference to decide whether tris bridge now [I1 M: Dresden, "H. A. Kramers. Between Tradition and Revo-
existsamers achte es alleine lution ', Springer-Verlag, New York, Berlin, Heidelberg 1987.

- .Wir machen es zusammen,
Denn wir sind nur kleine!

On the Application of Kramers' Theory to Elementary Chemical Reactions
J. Tree

Max-Planck-Institut-fiir biophysikalische Chemie, Am FaBberg, D-3400 G6ttingen, Germany

Chemical Kinetics / Elementary ,Reactions / Energy Transfer / Statistical Mechanics
Kramers' diffusion model in the energy controlled low viscosity and the momentum controlled high
viscosity range is confronted with reality for elementary unimolecular reactions and radical associations
in dense media. Collisional energy transfer appears to be much more complicated than-described by the
idealized model, On the other hand, there are examples where the Kramers-Smoluchowski equation well
describes the-transition to high viscosity behavior. In other cases, solvent shifts of the reaction barriers

are pronounced and superimposed on the transport effects-described by Kramers' model,

1. Introduction the complete master equation. Sometimes, there are very

H. A. Kramers' article of 1940 [1], on Brownian motion strong and relatively weak energy transfer contributions

in a force field and the diffusion model of chemical reactions, which operate simultaneously in one system [10]: In addi-

presents a milestone in studies of medium influences on rates tion, two-dimensional master equations have to be solved

of chemical reactions. In particular, our own program of on the energy and angular momentum scales [9, 11-14],

studying elementary reactions over: wide density ranges in such that even the formal treatment of the diffusion ptroblem

the same solvent [2,3], from low pressure gas via high pres- on these two scales is nontrivial, apart from the difficulties

sure liquid phase into solid environments, has followed Kra- of understanding state-to-state collisional energy transfer
mers' concept very closely. For selected cases, experiments cross-sections. In this sense, the low damping-small viscosity

of this type are available noW, such that one may ask to treatment of Kramers in chemical applications has to be

what extent-the idealized Kramers model applies, or where replaced by far more complicated considerations.

more complicated situations are encountered in reality. Kra- In the following we briefly review additional mechanistic
mers' discussion clearly distinguishes between the small and complications which may occur in the combination of atoms

large viscosity ranges, the former being characterized by a with atoms and with small polyatomic molecules. In this

diffusion equation of the Fokker-Planck-type on the energy case, there are activation-deactivation pathways which often

scale, the latter on the reaction coordinate, The following dominate the low temperature reaction and which are not

article briefly reviews which complications in reality arise in included in a diffusion model at all. The related problems

the low and high damping regimes which leave a lot of deserve much more attention from the side of theory and

unsolved uncertainties beyond the formal solution of the are, therefore, emphasized in the following. The mechanisms

Kramers problem. considered probably involve major contributions from sol-
vent-reactant van der Waals clusters. Furthermore, since the

2. Unsolved Problems in the Low Damping Range reactants are open shell species, larger numbers of electronic
states may contribute with collision-induced and cluster-

In the gas phase low pressure limit of unimolecular iso- enhanced nonadiabatic tinsitions between these states. Be-
merization, dissociation, and the reverse termolecular as- cause these effects vary over the low to high damping tran-
sociation reactions obviously the rate determining individ- sition of the Kramers problem, they require careful attention
ual collisional energy transfer process is of central impor- besides the transport aspects discussed in the Kramers
tance. Detailed experiments [4,5] of this process have shown model.
that it cannot be related to a macroscopic viscosity in the As an example, we consider the ozone forming combi-
way initially suggested by Kramers. Trajectory calculations nation
[6] have revealed its highly irregular character. Furthermore
it has been shown that, although the diffusion theory [7-9] 0 + O2 + M - 03 + M (1,-i)
provides a useful limiting description for inefficient colli-
sional energy transfer (average energy transfer , 'AT2) < and the reverse ozone dissociation. In the limiting loN pres-
kT), in reality more efficient collisions operate. Therefore, sure range in the gas phase, the third order rate coefficient
the diffusion treatment has to be generalized by solutions of has a %er) strong temperature dependence [15] ( bee Figs.

Ber. Bunsenges. Phys_ Chem. 95 (1991) Au. 3 VCII eriag3gesellsthaft inbil. 1W-6940 Weinhe, 1991 0005-9021,91,0303-0228 S 3.50 t 25,0
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0 - . - predict.,At low temperatures it markedly exceeds the strong
collison calculation. These observations suggest dominant
contributions from the radical complex mechanism involv-
ing steps like

0 + M o 0M (2,-2)

, 10  
OM + 0 2  0 3 + M (3,-3)

7t and/or contributions involving shallow excited electronic
states of 03, see below, Before the contributing spc;s and
states are well characterized by quantum-chemical calcula-
tions or separate experiments, the components of the reac-
tion in addition to the energy transfer mechanism can hardly
be understood.

The situation described for the ozone-system is typical
and knownfor atom recombination reactions [17]. The new

10 0 1 experiments indicate that small polyatomic systems show
10 100 K 1000 similarly complicated mechanisms which also cannot be ide-

alized by Kramers' model.
Fig, I
Low pressure third order rate coefficients ko/[Ar' of the recombi-
nationO + 02 + Ar--+ 03 + Ar-(closed, circles: recombination 3. The Low-HighDamping Transition Range
experiments, see Ref. (15]; open circles: converted from dissociation
eiperiments, see Ref. [15]; dashedline: from calculated strong col- Investigations of the gas-liquid transition, from moder-
'lision unimolecular rate coefficients, see Ref. (16] ately high carrier gas pressures to low viscosity liquid sol-

vents, provides an interesting access to the phenomena dis-
1.3 cussed in Kramers' model. At first, there is the typical falloff

behavior of the standard energy transfer mechanism of un-
imolecular reactions which, because of its multi-dimen-
sional-many coordinate, formalism, supersedes the one-di-
mensional Kramers model. Narrow Kramers turn-overs
from the low- to the high-damping regime, except for dia-

0" io~ tomic systems, are not expected within this theory [2,18].
The experimental results by Jonas and his coworkers (see.

°E e.g. [19]) of narrow rate coefficient maxima on the pressure
scale, therefore, probably cannot be interpreted by a low-

* high damping transition of a transport mechanism [20].
4: Besides the falloff pressure dependence of typical unimolec-

, 10"3t  ular reactions, there is ample experimental evidence now for
oa more complicated transition behavior, which can be at-

tributed to mechanisms involving clusters and electronically
nonadiabatic reactions. For instance, the recombination of
iodine atoms [21,22] and bromine atoms [23] at high inert

1_ __35 gas densities [M] show marked deviations from the recip-

10 100 T/K 1000 rocal rate addition law

Fig. 2 1/k 1/ko + 1lkdff (4)
As Fig. 1, for the recombination 0 + O2 + He -* O + He
(symbols as in Fig. 1, see Ref. [15]) (k0 denotes the pressure-proportional low pressure second

order rate coefficient and kdr indicates second order rate
1 and 2, for M = Ar and He respectively). Fig. 1 includes coefficient of the diffusion controlled reaction). The transi-
theoretical rate calculations [9,16] for the strong collision tion between k0 and kd,o can be much broader [21 - 23] than
limit (/'SE> > kT). At T _> 1000 K, the experimental given by Eq. (4); for iodine recombination in gaseous pro-
rate coefficients are about a factor of 100 below the strong pane [21], the reaction order exceeds 3; S-shaped curves are
collision calculation such that the diffusion limit of the en- observed in the carrier gas He. More dramatic deviations
ergy transfer mechanism seems to apply. However, with de- for the recombination of chlorine atoms [24] in N2 and CO2
creasing temperature the rate coefficient rises much stronger require further confirmation. Here one may think of the
than any collisional energy transfer model [4-6] would formation of relatively stable CINz or CICO 2 intermediates
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which trap the halogen atoms. Similar effects where ob- system where Fig. 3 illustrates the corresponding experi-
served-in the recombination of CH3 radicals in N2 as op- ments between 100 and 400 K at Ar pressures up to I kbar.
posed to that in Ar [25] where N2CH3 radicals may play a The various changes in reaction order appear surprising and
role. These effects, which all take place in the gas pressure unexpected. The full analysis has to wait for better quantum-
range 1-100 bar (at room temperature), suggest an impor- chemical calculations of excited electronic states, and for a
tan -roie of reactant-carrier gas clusters or even reactant- more elaborate theory of collision-induced nonadiabatic
carrier gas chemical intermediates. The presence of large transitions (see, e.g., the work for 12 in Ref. [27]). Fig. 3 is
quantities of I - C2H6 clusters at C2H6 pressures near 1 bar also in relation to the "feeling" of generations of kineticists
has recently been confirmed by calculations [26]. about electronic degeneracy factors in atom recombination:

at low pressures recombination was thought to proceed only
via the electronic ground state whereas in liquid phase a
contribution of all or at least a major part of the electronic

states correlating two radicals was suggested. This problem
is by no means solved. Fig. 3 shows how complicated the

10-  transition between the gas phase low pressure and the con-
densed phase range can be.

// / 4. Elementary Chemical Reactions in the Kramers-

Smoluchowski High Damping Range
r - In view of the many unsolved problems and the variety

of different phenomena contributing to the low and inter-

T •mediate density ranges such as discussed in sections 2 and

163K3, which have all not been considered in Kramers' treatment,
it appears reasonable to completely separate the treatments

213 g in the low and high damping ranges of the Kramers model.

253K - For the low damping range, Kramers' approach has to be
300K replaced by conventional unimolecular rate theory including
273 K, adequate energy transfer models and accounting for the ad-

ditional mechanisms discussed in section 2. The combina-
10° 102 2tion with the high damping Kramers-Smoluchowski treat-

( Ar/cm"' ment then can logically be achieved by modifying the bound-
ary condition of the large-viscosity Kramers solution such

Fig. 3 as elaborated in Ref. [18]. In this way the low-viscosity limit
Dependence of second order rate coefficients k of the recombination of the large-viscosity Kramers solution is replaced by the
0 + O2 + Ar - O + Ar on the bath gas concentration [Ar] general gas phase unimolecular rate expression. It is trivial
(from Ref. [15]) to show [2,18] that, in first approximation this again leads

to a reciprocal rate addition law, see Fig. 4,

Ilk -" 1/ko + l/k. + l/kd,,,, (5)

.8"  where ko, and kdff describe the low pressure gas phase, the
Di 1high pressure gas phase and the diffusion control rate co-

V2 k. k efficients (being of first order for a unimolecular reaction, ofsecond order for a bimolecular association reaction). The
transition between the different ranges in the next approx-

0o- 2  1o" 1 10 10 o 10 1os imation is corrected by suitable broadening factors [28].
k,/kw, In the present section we inspect some experimental stud-

ies of elementary chemical processes in the Kramers-Smo-

Fig. 4 luchowski high damping range, iu particular with respect to
'Simplified model of the density dependence of rate coefficients of the viscosity dependence of the rate. We ask to what extent
unimolecular reactions according to Eq. (5) (see Refs. [2,18]) the effects of frequency dependent friction in the "turnover

problem" (see e.g. Refs. [29,30]) have become visible and/
or which other phenomena may have manifested themselves.

Mechanistic complications can lead to unexpected pres- We only consider studies in single solvents %here viscosities
sure and temperature dependenteb in the loN -high damping %Nere varied by pressure (and temperature) changeb. Halogen
transition range. As an example v e again refer to the ozone atom recombinations in the gab-liquid transition range in
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all cases were found [21 -23,31], to approach a k oc 1/i ular, the isomerization of electronically excited trans-stil-
relationship well characterized by Smoluchowski's equation bene and diphenylbutadiene have provided a large amount
for diffusion control. This behavior was confirmed up t o of relevant data. Experiments in compressed ethane (see the
5-7 kbar in-rare gases, small alkanes like ethane, but also last results [32] shown in Fig. 5) follow precisely the Kra-
larger liquid alkanes like n-heptane, methylcyclohexane and mers-Smoluchowski equation approaching k oc 1/q in the
i-octane. Since no surprises were observed in these cases high damping limit (the log k - log 1/D plot is chosen in
characterized by Morse-type potentials, similar experiments Fig. 5 in order to represent the 'gas-liquid transition in. the
with energy barriers, should be inspected, most reasonable way). While no signs of a frequency de-

pendence of the friction are observed in this case, where
01i/cP 10"2 0, 1 viscosities of the solvent up to about 0.6 cP were applied,

0 the situation changes with more complex solvent molecules.
For instance, experiments in compressed n-hexane in the I
= 0.3-3 cP range showed k oc q -I dependences with a =
0.3-0.5 [33-35], see Fig. 6.

10°  The comparison of Figs. 5 and 6 shows a striking differ-
ence. While the reaction in ethane at q 0.5 cP accurately

'i follows the I/q-dependence of the Smoluchowski limit of
- Kramers' theory, at the same viscosity strong deviations

occur in n-hexane. First, this indicates that "isoviscosity
plots" of reaction rates are not meaningful in this case.
Doubts arise whether they are meaningful in other systems.
Second, the temperature and pressure dependences as well
as the dependences on the nature of the solvent [32,36,37]

10 Z S show such a complicated behavior that frequency dependent
10- 1 '10 102 10' 10 friction, if of importance at all, is only one of several factors

cmn s' /D influencing the reaction dynamics in dense media. Third, the
Fig. 5 comparison of isolated molecule isomerization data and the
First order rate coefficients of the photoisomerization of trans-stil- construction of transition curves into dense environments
bene in ethane ( open circles: experiments from Ref. [32]; full line: with the actual measurements (see Fig. 5) shows dramatic
representation by Eq. (5) with fitted, threshold energy; dashed line:
Eq, (5) with threshold energy from isolated molecule experiments) differences in stilbene and smaller but still marked differ-

ences in diphenylbutadiene [32,37]. What looks like the
transition state theory-low damping limit of Kramers theory
in Fig. 6, apparently is already highly "contaminated" by
reactant-solvent interactions compared to the isolated mole-
cule reaction. We have attributed this to a modification of10 the potential energy surface in clusters which is typical for

T= . .53 K the 0.1 -100 bar range, i.e. like for atom recombination we
T 453 K have postulated a "cluster mechanism" operating in the in-

398 K termediate damping range. If the Kramers equation applies
at higher densities, such as shown in Fig. 5, this apparently
means that further solvation of the cluster here does not

10 343 K influence the potential. On the other hand, the q-dependence
0 0 observed in n-hexane may indicate stronger interactions and

0 -.. modificafions of the potential and/or microviscosity effects
298 K such as frequency dependent friction. The effects cannot be

I I I separated in a unique way such as emphasized before [28].
01 1 10 Apart from the difference between the "predicted" and meas-

Fig. 6 7 /cP ured curves in Fig. 5, shifts of the onset of a decay of k on
First order rate coefficients of the photoisomerization of trans-stil- the D- '-scale between different low viscosity solvents
bene in hexane ( full circles and full lines from Ref. [35]; dashed [32,37] clearly demonstrate the presence of solvent-specific
line from Ref. [34], open circles: solvents = n.alkanes at I bar [33] reactant-solvent interactions in the cluster range. For this

reason, studies of isomerization rates of energy- 3pecifically
Association reactions of this type, for instance the addi- excited isolated well-defined stilbene-solvent clusters are of

tion of atoms to double bonds such as H + ethylene or great importance and should be done urgently.
H + benzene having small barriers in the 4-12 k mol- ' There arise further complications in the analysis when the
range, have not yet been studied in this way. However, uni- temperature dependences of the rates are investigated in
molecular isomerization reactions with small barriers are addition to the pressure dependences. Recent %Nork in this
ideal model systems for the considered problem. In partic- direction [32,37] has emphasized the different role which
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'the, multidimensionality of. the potential plays in the Smo- [5] I. Oref and D. C. Tardy, Chem. Rev., in press.
luchowski high damping and inthe unimolecular reaction [6] K. F. Lim and R. G. Gilbert, J. Chem. Phys. 84,-6129 (!986).
S -- damping regime. In the high damping range the shape [7] J. C. Keck and G: Carrier, J. Chem. Phys. 43, 2284 (1964).of thept ei Int the highdlepin ire.angeatheihaty [8] E. E. Nikitin, "Theory of Thermally Induced Gas Phase Re-

of the potential near to the saddlepoint, i.e. anharmonicity actions", Indiana University Press, Bloomington 1966.
in the reaction coordinate and nonlinear coupling with the [9] J. Troe, J. Chem. Phys. 66, 4745, 4758 (1977).
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Photoisomerization in Dense, Gases and Liquids
Jorg Schroeder

Institut ffir Physikalische Chemic der Universitilt G6ttingen, TammannstraBc 6, W-3400 Gittingen, Germany

Chemical Kinetics / High Pressure / Photochemistry
The pressure and temperature dependence of therate coefficientfor the singlet state photoisomerization
of trans-stilbene and all-trans-diphenylbutadiene in supercritical and liquid alkane solvents reveal theimportance of specific solvent effects modifying the reaction path on the potential energy surface. In'the
gas-liquid transition range the barrier height for the reaction seems to be lowered due to increasing
solvation of the reactants in solute-solvent clusters. At higher pressures, the transition to the Smolu-
chowski-limit within each solvent is well described by Kramers' model. Differences between solvents can
be attributed to a solvent-dependent barrier shape. Deviations from this description only appear for
stilline at higher viscosities. In part, they seem also be due to a specific influence of the compressed
solvent on the reaction path and to a frequency dependence of the friction. Solvent-size dependent micro-
friction effects do not seem to be responsible for the observed solvent'dependence of the reaction rates.
Manifestations of multidimensional barrier crossing show up in the strong temperature dependence of the
rate coefficient at constant solvent self-diffusion coefficient. Apparently, the reaction path on the energy
surface changes with temperature leading to an effectively temperature dependent height and shape of the
barrier for the reaction With increasing excitation of "perpendicular" modes Possible reasons for the
striking difference of the friction dependence of the rate coefficient between stilbene and diphenylbutadiene

at intermediate to high,friction are also discussed.

1. lntroductlon have been carried out, the temperature dependence in the
The investigation of the influence of solvents on the rates low viscosity regime close to the so-called "Kramers-turn-

of chemical reactions has been one of the main topics of over" region [18,30-31] and the deuterium isotope effect
chemical kinetics for several decades, The problem can be have been investigated (12,19]. There have been also two
approached on different levels. Looking at the, role of the studies of the pressure dependence in liquid solvents
solvent from the point of view of statistical mechanics in an [23,32]. As a result of these experimental efforts, three phe-
abstract, "non-chemical" way, hypothetical "non-interact- nomena have emerged that appear to be crucial to the un-
ing" solvents simply act as a heat bath and may be consid- derstanding of the solvent influence on the photoisomeri-
ered as a continuous viscous medium at'liquid phase den- zation dynamics in these systems:
sities. From this point of view, statistical theories are suffi- (i) The turnover of the rate coefficient from the collisional
cient to describe solvent effects on reaction rates and enable activation into the diffusivi. regime is not observed in low
us to predict, e.g., the entire pressure dependence of a uni- viscosity liquids [30,31], as one would have expected on
molecular reaction from gas to liquid just from the micro- predictions based on Kramers' theory [33], but at even
canonical rate coefficients measured under isolated molecule lower friction in supercritical solvents [4,17].
conditions [1 -3]. Such a prediction then has to be com- (ii) Assuming that statistical reaction rate theories are ap-
pared with experiments covering a pressure range as wide plicable, thermal averaging of the microcanonical rate co-
as possible in a single inert solvent. This approach opens efficients obtained for isolated stilbene leads to a value of
the possibility to test the range of applicability of different the high pressure, iimiting rate coefficient k,-, which is an
theoretical models as well as - by comparing the pressure order of magnitude below the measured value in liquid so-
dependence in different solvents - to detect specific solvent- lution [11,34]. For DPB, k,, is only about a factor of two
solute interactions that may obscure purely collisional or below the measurement in liquid solvents [35,36].
frictional effects in real solvents. (iii) In a series of n-alkane solvents, the observed nonra-

In this spirit [1,2], we have recently extended our earlier diative decay rate of the S,-state, A,, does not show the
measurements [4] of the pressure and temperature depend- expected inverse dependence on solvent viscosity 1i for nei-
ence of two particularly well-studied reactions [5,6], the S1- ther stilbene [20] nor DPB [23].
photoisomerization of trans-stilbee and EE-1,3-diphenyl- No doubt remains that the first observation can be un-
butadiene (1.3) (in the.following referred to as stilbene and derstood, if one includes multidimensionality in the theo-
DPB, respectively) [7,9]. The dynamics of thes,. two reac- retical description of the low-damping region, which is not
tions has been investigatot under isolated molecule condi- taken into account by Kramers' original treatment [1, 2,
tions [10-16] as well as in numerous, mostly - with few 37 -40]. The physical explanations offered for the other two
exceptions [17- 19] - liquid solvents with picosecond time phenomena, however, are still controversial and will be dis-
resolution. Detailed systematic studies of the viscosity and cussed here in the light of our recent results on the pressure
polarity dependence of the rate coefficient in homologous and temperature dependence of k., for stilbene [7,41] and
series of nonpolar [20-23] and polar [19,24-29] solvents DPB [8,9] in nonpolar solvents.

Ber. Bunsenges. P)s. Chem. 95 j 1991, Ao. 3 & VCH I erlazgsgeseellshaft mbH, If -6940 IReuheun, 1991 o5-YQ.u21, 91;jUo3-233 S 3.,- .25u
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2. Experimentai Technique two. The calculations are based on an optimized RRKM-

Decay rate coefficients of the SI-state of stilbene in all solvents fit [34,35] to experimental specific rate constants k(E)
and of DPB in~supercritical solvents,"liquid ethane and propane [10-16] which gives the reaction threshold E0 ([M] = 0) for
were measured by picosecond pump-probe absorption spectros- the isolated molecule and an activated complex frequency
copy as described in detail earlier [4,8]. The were determined from scaling factor. Thermal averaging of k(E) over a Boltzmann
the transient absorption decay at 616 nm after excitation at 308 nm.The WHMof he U-exitaion uls wa appoxiatey ~ distribution then leads to k . In this analysis, one makesThe FWHM of the UV-excitation pulse was approximately 5 ps,
its value for the red probe pulse was 2.5 ps. the pump pulse energy - in addition to some minor approximations [7,8] - the
hitting the sample was about 0.3 mJ at 308 nm, and the energy of assumptions that
the 616 nm probe pulse was about 0.05 mJ. The plane of polari- (i) kn, is the rate coefficient for the twisting motion about
zation of the probe beam could be varied by means of a zero order the double bond, which is followed by rapid internal con-
halt-wave plate to eliminate the effects of overall rotational relax-
ation on the transient absorption signals. Samples of 200 mm thick- version to the ground state in a twisted geometry [5,6], and
ness-were used in high pressure gas phase experiments, and of 20 that
mm or 1.8 mm in liquid phase measurements. (ii) This motion proceeds as a thermal adiabatic reaction

The S-decay rates of DPB in liquid n-alkane solvents (pentane on a singlet excited state potential energy surface.
to dodecane) at room temperature were obtained from the fluores- Following this approach, we have proposed (4] that k,,
cence lifetimes measured by time-correlated single photon counting
[9,42]. Excitation light pulses at 308 nm from a frequency-doubled, exceeds k. for both molecules, because the effective barrier
synchronously-pumped dye laser (pulse autocoirelation FWHM height for the reaction changes as a "solvation shell" grad-
1.4 ps) were used at the full repetition rate of 76 MHz. Fluorescence ually builds up around the reactants already at densities
from the -7 kbar high pressure cell was detected perpendicularly to that are an order of magnitude below, that of, e.g., liquid
the excitation beam in a "magic angle" arrangement. The FWHM
of the instrument response function was 520 ps, its time resolution alkanes at ambient temperature. We model this increasing
in conjunction with the high pressure fluorescence cell about 100 ps, solvation in solvent clusters [8] simply by the equilibrium
For the analysis of the fluorescence decay histograms we used a coverage 9 of the reactant "surface" due to "adsorption" of
convolution and fitting procedure in conjunction with a Fourier. solvent molecules, which increases with solvent concentra-
transform method to take full advantage of the high repetition rate tion [M]:
of the instrument. Fluorescence lifetimes measured at ambient pres-
sure in a- standard quartz fluorescence cell agreed to within 2%
with literature data for the lifetime range from 150 ps to 2 ns, (m ) Ki/(1 + K,[M]) (I)
confirming the internal consistency of the fitting procedure. The
data scatter obtained with the high pressure cell was slightly worse, where K, is the adsorption equilibrium constant. We then
amounting to at most 5%. propose a linear dependence of the barrier height on e,

which allows us to calculate ko,([M]):

3. Results and Discussion E0([M]) = Eo([M=0)-e([M") (2)
3,1. Solvation Effects at Low Friction . {Eo(fM" = 0) - Eo(solv)}

The comparison of the non-radiative rate coefficients k,{0
of stilbene and DPB measured at low friction in different 00
supercritical solvents with the corresponding calculated high k. ([M])= S k(E)f(E)dE. (3)
pressure gas phase limiting rate coefficients k. [7'8] in WoItNil)

Table 1 shows an order of magnitude discrepancy for stil- Here Eo(solv) denotes the reaction threshold energy for the
bene and a systematic deviation for DPB of the order of reactant that is sufficiently solvated in solvent clusters. In

Table I
Comparison of non-radiative rate coefficients A,, of stilbcne and DPB at low friction with the calculated high pressure limit A,. Estimates of degree of
solvation e and barrier height Eo(solv) for solvated reactants

Eo(solv)/
Solvent T/K k./ 10' s- , kj10 s- 1 e ([MJ)al cm' s (kJ/mol)

stilbene Eo([M] = 0) = 1300 cm- ' (15., kJ/mol)
methane (see text and Fig. 2) 725 (8.7)
ethane (see text and Fig. 1) 675 (8.1)
propane 468 50 16 0.86 675 (8.1)

DPB Eo([iM] = 0) = 1100 cm- 1 (13.2 kJ/mol)
ethane 388 50 17.9 0.96 850 (10.2)

SF6  388 32 17.5 0.96 930 (t11.1)
364 27 14.8 0.96 930 (11.1)

CO2  384 50 17.5 0.97 810 (9.7)

Helium 429 40 25.9 0.92 955 (11.4)

Taking K 104 cm'mol (see text) for all solvents except Helium (K, = 2 10' cm, mol) and methane (K, = 4 10' cm', mol).
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the following, we will continue to use the term "solvated" DPB this effect is much less pronounced, amounting to ap-
in this sense. proximately 25 percent in ethane.

The gradually increasing solvation of stilbene and DPB Further support for a solvation-induced barrier shift
in supercritical ethane is also visibleiin the spectral shift of comes from a corresponding analysis [8] of k,,-values of
the electronic ground state absorption spectra [7,8]. Plots stilbene measured in methane at room temperature [18] as
of the redshift of the absorption maxima versus solvent po- shown-in-Fig. 2. The, dashed curves represent the density
larizability show a steeper slope in low density supercritical dependence of the rate cocfftcient calculated according to
solvents, where partial solvation in solvent clusters takes the Lindemann-Hinshelwood expression
,place, than at higher liquid phase densities. From the solvent
density at which the fairly abrupt change in slope occurs, k = ko [M] k0 /(ko[M] + k.) (4)
we can estimate the order of magnitude of'K for ethane,
K, 104 cm3/mol. This value is in the same range as those with the low-pressure limiting rate coefficient k0 [M] asestimated from the gas phase cage effect in iodine photolysis given in Ref. [8] and k. from Eq. (3) for Eo [M] = 0) =[43)a 1300 cm- 1 (15.5 kJ/mol; lower curve) and Eo(solv) = 725

1'lith this estimate of K, we obtain from Eq. (1) the values cm- (8.7 kJ/mel; upper curve). The experimental data dem-
for e listed in Table 1. Using Eqs. (2) and (3), we can then onstrate the transition between these two limits due to in-
fit k,, ([M]) to the measured kr by choosing the appropriate creasing solvation of stilbene in solvent clusters, which can

value of EO(solv). The results of this fitting procedure are be modelled (solid curve by Eqs. (1) to (3) with an equilib-

listed in the last column of Table 1. Such an analysis of the rium constant Ks = 4. 10 cm3/mol.

rate coefficients of DPB shows that Eo(solv) definitely varies
with the nature of the solvent. This indicates the presence - - - - -

of solvent-specific interactions that cause a decrease of the
barrier height for the reaction in the solvated with respect /

to its magnitude in the isolated molecule. We would like to
emphasize that in this low density range the friction is not lo10 /

sulficiently high to cause any barrier recrossing. It is, there- -
fore, permitted to compare the measured k, directly with rn

25.5

0
-S 10 o . . .. . . . ...

-10~ 
" 1I0-s

0 [M]/mol cm - '

25.0 -Fig. 2
0" Density dependence of the nonradiative rate coefficient kn, of stil-

- bene in methane (data from Ref. [18]). The upper and lower dashed
curves represent calculations of the thermal rate coefficient for en-
ergy barriers Eo([M] -- 0) = 1300 cm - 1 (15.5 kJ/mol) and Eo(solv)

0 = 725 cm - 1 (8.7 ki/mol), respectively. The solid curve is calculated
from the solvation model (see section 3.1) using an equilibrium

24.5 ................ constant of K, = 2 Io cm3/mol
2.0 2.5 3.0 3.5

1 OOOK/T The solvent dependence of Ks and EO(solv) found for DPB

Fig. 1 is as one would intuitively expect: "less interacting" solvents
Temperature dependence of the nonradiative rate coefficient k, of give rise to smaller barrier shifts and also seem to have
stilbene in ethane at low friction. The solid line represents the tem- smaller values of Ks, though the latter are only rough esti-
perature dependence of the high pressure limit of the thermal rate mates for all solvents but methane. As we do not know
coefficient, k,, calculated for an energy barrier Eo(solv) = 675 cm-' which of the electronic configurations contribute signifi-
(8.1 ki/mol) cantly to the excited state potential energy surface for the

reaction and how solvent-solute interactions might affect the
Fig. I shows an Arrhenius representation of the tempera- mixing of them, we can only speculate, why the solvation

ture dependence of k,, for stilbene at such loxv densities in effects is much more pronounced for stilbene than for DPB
ethane. The dashed line represents the calculated tempera- photoisomerization. Evidently, the energy gap between the
ture dependence of k. for a barrier height Eu(sol%) = 675 two lowest excited singlet state 'A. and 'B, is much smaller
cm- ' (8.1 kJ, mol), corresponding to an activation energy in DPB than in btilbene, and their order in the gas phase is
E, 530 cmi -'(6.3 kJmol). The energy barrier is effectively reversed [14,15,44]. It seems, however, that the 'B,-state is
lowered by a factor of about twso in solvated btilbene. In the lo~xer state for both moleoules in solution [23,45]. Hoi%
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this might affect the energy barrier for the-twist around the 4-alkyl-substituted stilbene, which shows a significantly
double bond or-its susceptibility to solvwnt interactions we lower reaction barrier under isolated molecule. conditions
do notknow at present. upon substitutionwith ethyl and propyl [52].

The solvation model should be tested experimentally by
preparing stilbene-solvefit clusters in a supersonic jet ex- 3.2. Transition from Low to Intermediate Friction
pansion andmeasuring k,, at different excitation energies.

If the cluster binding energy exceeds the height of the energy We can now combine unimolecular rate theory - rep-

barrier, one can study the dependence of knr on cluster size, resentibg the pressure dependence of knr in the falloff regime,

internal energy, and solvent. In this way solvent induced including the lowering of the reaction threshold with density

changes in the effective barrier height should become ap- as described above - with Kramers' expression [33] to

parent that confirm the parameter values derived here. describe~the influence of increasing friction on the reaction

The interpretation given here rests on the assumption that [1,37]:

the-photoisomerization can be treated as a thermal reaction
on an adiabatic potential energy surface. In view of the deu- ko [M] k (
teration effects on kr [12,19], which seem to be in conflict knr = ko [M] + k. . FK, (5)

with RRKM-calculations, it has been argued that these con-
ditions might not be met, because of with

(i) incomplete internal vibrational energy randomization
(IVR) in the isolated molecule [18,19,36,46], or FKr = [fl2/4D + 1]' - P/2(ob . (6)

(ii) the non-adiabaticity of the reaction surface [11,47],
which concerns the question of the origin of the energy bar- The mass weighted friction coefficient P can be estimated
rier in the lowest S-state of stilbene and DPB [5,48-50]. from the molecular parameters of stilbene and DPB and the

In these alternative models, the apparent discrepancy be- Stokes-Einstein relation [7,8,53] assuming that a hydro-
tween the nonradiative decay rates for isolated and solvated dynamic description is applicable. We use [4] the solvent
stilbene is then attributed to IRr self-diffusion coefficient D instead of solvent viscosity as the

(i) the reaction rate being controlled by slow INVR-proc- relevant parameter to describe solvent friction throughout
esses in the isolated molecule [19,51], or to

(ii) a transition from a diabatic to a adiabatic process with the entire pressure range. The "imaginary barrier frequency"
increasing friction due to a slowdown of the passage through Wb in Kramers' model describes the shape or curvature of

the avoided curve crossing [12]. the reaction path across the energy barrier. Without know-

We have discussed these points in detail previously [7, 8, ing the potential surface for the reaction, however, one

38], and concluded that, as long as we do not have sufficient should be careful not to a priori identify it with a unique

information on the potential energy surface for the reaction, physical quantity. Instead, it has to be considered as a fit

we have no means to entirely reject any of the proposed parameter which essentially contains all pressure or friction

explanations. The observation of solvent-specific effects, induced variations of the prefactor that are not already

however, seems to support the view that the effective reac- taken care of by P and k,,.

tion barrier decreases due to solvent induced changes of the
adiabatic potential energy surface. 10 it

If limited IVR alone would be responsible for the obser-
vation of an apparently higher barrier in the isolated mole-
cule, then collisionally assisted IVR should eventually bring
down the barrier height to its "real" intrinsic value, irre-
spective of the nature solvent. Also, one would not expect T
limited IVR to be of significance in a molecule of the size C. 10 lo
of DPB.

Specific solvent effects could be accounted for in the
framework of the diabatic model, because differential solvent
shiftsof the two states involved could have an effect on the
crossing point dynamics. But one would not expect an in-
crease in the adiabaticity of the reaction already at methane 10 .
densities where the transition of kn, from isolated to solvated 10 10 2 10 3 10 4 10 5
stilbene takes place (Fig. 2), because collision rates there 2s-I/D
would be far too low compared with the dwell time of the
reactant in the crossing point region, as pointed out by Fig. 3
Fleming et al. [18,19]. Nonradiative rate coefficients km of stilbene at T = 298 K in ethane

(0), propane (A), and n-butane ([I) versus D- 1. The solid lines
represent model fits (see section 3.2) with EOtsolv) = 675 cm

induced by intermolecular interactions proposed here was (8.1 kJlmol) and wt, 2.6 10"- s 'for ethane, j, = 4.4 10" s
observed as a consequence of intramolecular interactions in for propane, and Wb = 6.5 10" s 'for n-butane
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Table 2
Sovent, dependefice of barrier heights Eo(solv) and-irnaginary barrier frequencies Ob for stilbene and DPB

Solvent T/K Eo(solv) 0 1/ )
cmj(kJmol) b/0 s /0Sc '

Stilbene
ethane 298 675 (8.1) 2.6 42.6
propane 298 675 (8.1) 4.4 62.9
n-butaae 298 675 (8.1) 6.5 81.2
CO 2, 298 580 (6.9) 2.8 26.5
SF6  298 590 (7.1) 6.0
Xenon 298 600 (7.2) 10 41

DPB
ethare 295 850 (10.2) 0.45 42.6
propane 295 850 (10.2) 0.65 62.9
n-butane 295 850 (10.2) 1.0 81.2

a) Molecular polarizability c, Ref. "55].

The result of modelling the ,isothermal pressure depend- about the same in both cases. In the latter case, this would
ence of kr for stilbene at 7 % 298 K in ethane, propane throw doubts on the approach to use friction coefficients
andn-butane, using Eqs. (1)-(6) with E0(solv) as determined determined from the overall rotational relaxation of the
independently at low pressures (Table 1) and fitting cob is molecule to describe the friction dependence of kr [22, 58,
shown by the solid curves in Fig. 3, a double logarithimic 59].
plot of kr versus 11D. There are two things to note:

(i) Kramers' expression, Eq. (6), perfectly describes the 3.3 Beyond Intermediate Friction
variation of k,, with friction in each of the solvents (the Deviations from the inverse viscosity dependence of k,,
maximum solvent viscosity in n-butane is 1.5 mPa . s). predicted by the Smoluchowski-iimit of Kramers' expres-

(ii) There is a significant solvent dependence of k,,, in sion,
addition to the purely frictional effect. (This appears as the
successive shift of the curves in the region of higher friction, k'. ; k cOb/Il (7)
The shift in the falloff regime results from the proportion-
ality between collision frequency and lID which contains in nonpolar solvents for stilbene and DPB have been ob-
the solvent-solute reduced mass as a constant). According served for viscosities q 2 mPa s in n-alkane solvents bu-
to our model, this is a consequence of the solvent depend- tane to hexadecane at atmospheric pressure [20-23]. In
ence of WOb. the past, the weak decrease of k,r with l/il - corresponding

The variation of cob with solvent, which is found for both to a power law of about 4 -°5 - mostly has been associated
stilbene and DPB, is shown in Table 2. It appears that, to with a breakdown of the standard hydrodynamic descrip-
a first approximation, within the small alkane series at least, tion of the frictional solvent forces contained in the param-
cob increases with the molecular polarizability a of the sol- eter P in Eq. (7). It has been attributed to the frequency
vent. For the other solvents, WOb is higher than expected by dependence of the friction [20-23,57], i.e. to non-Mar-
this correlation. Apparently specific solvent-solute interac- kovian behaviour of the solvent, or, alternatively, to a break-
tions modify not only the barrier height, as in the low-den- down of the Stokes-Einstein relation connecting friction and
sity region, but also its shape. viscosity [22, 58-61], i.e. to mice'ofriction effects. We have

An alternative explanation could be a variation of the proposed that a variation of the barrier height with alkane
proportionality constant linking P and the self-diffusion co- could be responsible for the observed effect [4] - similar
efficient, i.e. a solvent dependent microfriction factor [22]. to those occurring in polar systems [26], - although it has
According to existing microviscosity models [54,55] this been claimed [62] that available activation parameter data
factor becomes increasingly important with decreasing sol- in liquid alkane solvents at atmospheric pressure preclude
ute to solvent size ratio. For a larger ratio, one would expext such an assumption.
hydrodynamic models to give a better description than for Our recent study of the pressure dependence of kr for
a smaller ratio approaching unity. For the small size solvents DPB in n-alkane solvents ranging from pentane to dodecane
listed in Table 2, therefore, cob should show a more pro- [9] demonstrates that restricting the experiments to just a
nounced variation for the smaller stilbene than for DPB. As variation of solvent may lead to a qualitatively different
cob increases by about a factor of three from ethane to picture of the physical phenomena underlying the photoiso-
n-butane for both stilbene and DPB, this expectation is not merization dynamics. Fig. 4 shows as one example a linear
met. So either microfriction effects are not important or the plot of k,,, for DPB versus 1/q in compressed pentane and
hydrodynamic volume of the moving molecular group is dodecane at T = 298 K. The points to note are
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(i)-the linear correlation between k,, and /q, models that include available volume effects [55] and would
(ii) the markedly differentslope for the two solvents, and predict a pressure dependence of microviscosity factors also
(iii) the nonzero intercept for infinite viscosity, do not apply.
The intercept was assigned to a second, viscosity inde- There~remain three possible explanations for the solvent

pendent nonradiative channel from the S-state of DPB, dependence of B,: (i) a solvent dependent microfriction fac-
probably internal conversion to the E,E-ground state tor, (ii) a variation of ko, with solvent, i.e. a solvent induced
[9,23]. Its rate coefficient kic varies slightly with solvent [9]. barrier shift of Eo(solv), and (iii) a change of the barrier shape
The slopes B, increase with alkane chain length. (The vari- cOb with solvent.
ation in slope B, with solvent is equivalent to the shift seen
for the three solvents ethane to butane in Fig. 3 as expressed 0.8
in a-variable cob in Table 2). Fig. 5 shows a double logarith-
mic plot of kldB, = (k,r - kl)/B, versus demonstrating the *0

perfect I/q-dependence. 0.6

10,0 0 -
a- 0.4 -

0~ .2 -
/' 0

5.0

00.
14 5.00.0 5.0 10.0 15.0

No. of C-Atoms
Fig. 6
Comparison of experimental slopes B, (0) and slopes calculated

0.0 from the Gierer-Wirtz microviscosity model (solid line) and from
0.0 1.0 2.0 3.0 rotational relaxation via the Hubbard relation (dashed curve)

10-3Pas/.r (Ref. [9], see section 3.3)

Fig. 4
Nonradiative rate coefficient k,, of DPBin pentane (0) and do- In Fig. 6 we compare experimental B,-values with esti-
decane (0') at T = 298 K versus t,i. Solid lines represent linear mates of microfriction factors calculated from the modified
least squares fits to the experimental data Gierer-Wirtz model [54, 55], which predicts a linear de-

pendence of B, on solvent size [9], and with friction coef-
100 ficients flr determined via the Hubbard relation [63,64]

from experimental molecular rotational relaxation times in
the S,-state [59,65]. In both cases the calculated values in-

10 crease with solvent size, but the observed dependece of B,
is qualitatively different, showing first an exponential rise
followed by a turnover probably into saturation for the two

1 largest solvents studied. From this apparent discrepancy we0
0 conclude that microfriction effects may contribute to some

extent, but that existing models would predict a qualitatively
M 0.1 different solvent dependence than observed [9]. This is in

0 agreement with similar findings by Kim and Fleming for
.stilbene [22] and supports our interpretation that the dif-

" 0.01 ferent cob-values for ethane to butane in the intermediate
0.01 0.1 1 10 100 friction regime indicate solvent-induced barrier shape

7/10-3 Pas changes and are not caused by changing microfriction fac-
Fig. 5 tors.
Viscosity dependence of solvent scaled isomerization rate coefficient As the hydrodynamic Kramers-Smoluchowski expression
kjlB, for DPB in n-alkanc solvents from ethane to dodecane in represents the variation of the rate coefficient of DPB with
the pressure range from 0.1 - 650 MPa. (B, is the slope of the linear friction in longer chain alkane solvents, solvent-induced bar-
plot of k, versus lfi; see section 3.3) rier height and shape variations remainas a possible cause

for the strong solvent dependence of the slopes. As we find
A conclusion that can be drawn immediately from the no Nariation of E,(solv) for DPB from ethane to propane

observed linearity is that the reaction rates k,,, are not in- to butane, one can assume as a first approximation that
fluenced by frequency dependent friction. Microfriction there \ill probably be also little Nariation with further in-



J.,Schroeder:.Photoisomerization in Dense Gases and Liquids 239

creasingalkane chain length, and that changes of Wb may scale of the reaction inhexane at the same viscosity is more
berf greaterimportance. than one order of magnitude shorter for stilbene. An analysis

of the pressure dependence of k,, in hexane along different
isotherms indicates, however, that possibly more than one
effect is. involved [41]. A comparison with corresponding

0 1.0 0, - , measurements inmethylcyclohexane again reveals-the im-

, -
"  ,portance of specific solvent effects [41], although it remains,.- ,difficult to decide whether the different viscoelastic response

o5 of the solvents or a potential energy surface-effect is re-II I /
0.5 sponsible. A comparative high pressure study of stilbene and

0.5 P DPB in alcohol solvents [67], where the reaction for both
molecules is much faster due to a much lower barrier, how-
ever, reveals the same difference in viscosity dependence as
in hexane: rate coefficients for DPB are linear in 1/1 in each

0. solvent, while for stilbene they show the power dependence
'0.0 1.10 2.0 3.0 4. found in solvent series experiments [24-27,66]. In the in-

0.0 1.02.0 0 4termediate to high friction regime, independent of the nature

10-3Pas/0 of the solvent, there seems to be a basic difference between

Fig. 7 stilbene and DPB photoisomerization dynamics, the origin
Nonradiative rate coefficients k,,(p)/knr(p = 0.1 MPa) of stilbene of which still has to be clarified in further experiments.
and DPB at T -, 298 Kin compressed n-hexane. (0) stilbene,
Ref. [41]; (0) stilbene, Ref. [32] (calculated from fluorescence 3.4. Multidimensional Barrier Crossing
quantum yields); (E) DPB, Ref. [9]. The dashed line corresponds
to a linear least squares fit, the dashed curve to-a power law q-a29 The original Kramers model treats the diffusive barrier

Does -the Kramers-Smoluchowski description also hold crossing as a one-dimensional process in which a singleDoestheKraers-molchoski escipton aso old mode becomes the reaction coordinate, A multidimensional
for stilbene photoisomerization in single solvents in the same oe o ms the ren coordiae.l idimen ly
friction regime? In Fig. 7 we compare the viscosity depend- theory has only been fully developed fairly recently

[ne68-73], and the importance of friction anisotropy [74,75]esed ofthexan reative o hi fr rsctie a s aB inom- and the topology in the barrier region has been recognizedpressed hexane relative to their respective values at atmos- [76,77]. Experimentally, the multidimensional barrier to-

pheric pressure. The strongly nonlinear behaviour of the po6ogy can mn tlf i the formeo th rtmertr

stilbene rate coefficient corresponds to a fractional'power of pology can manifest itself in the form of the temperature

0.29 [41] (indicated by the dashed curve), which is fairly dependence of the rate coefficient [8,80], which - by high

close to the exponent 0.32 found for the alkane series pressure techniques - car, be measured in a single solvent

[20,21,30,66]. This result agrees with a recent detailed at approximately constant self-diffusion coefficient or vis-

study of Kim andFleming [22], who conclude-that the cosity in the intermediate and high friction regimes [7,8].

frequency dependence of the friction contributes signifi- Figs. 8 and 9 show Arrhenius plots of knr for stilbene and

cantly to the observed viscosity dependence rather than mi-
croviscosity effects. Since probably mainly the size ratio of 26-
twisting moiety to solvent molecule, which must be very
similar for stilbene and DPB, determines to what extent the
actual friction deviates from that measured by solvent vis- 25
cosity, our results for DPB also rule out microfriction as a T
major contributor to the observed deviations. ,)

Whether frequency dependent friction, pressure induced 24-
changes of the potential surface parameters or the multidi-
mensionality of the barrier crossing process [68,74,78,79] - 0
are responsible for the observed phenomena, is still an open 23
question. Further experiments on the pressure and tempera-
ture dependence of the rate coefficient at high friction are
needed to answer it. It would be surprising, however, if the 221
striking difference between stilbene and DPB would be 2 3 4
caused by effects due to multidimensional barrier crossing 100oK/T
in stilbene that would not appear in DPB. This would also
contradict the experimental manifestations of multidimen- Fig. 8
sionality we find in the temperature dependence of knr for Temperature dependence of the nonradiative rate coefficient k. of
stilbene and DPB (see section 3.4 below). stilbene in ethane at constant friction (D i, 5.10 -1 cm2/s): (0) ex-

periment; dashed line: calculated from Eq. (5) with temperature-It might be that it is frequency dependent friction which independent parameters 0ob and E(solv), solid line. calculated with
is more important in stilbene than in DPB, because the time temperatu-e-dependent parameters (see section 3.4)
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10'": isotherms and recalculate the Arrhenius-plot correspond-
ingly, we obtain :the solid .curves in Figs. 8 and 9, which
agree, much -better withthe measured temperature depend-
ence.

10.~P 0

0 0 "-. - - . 1 0 l o t

C0
1 0 , 0.. . . . . . ' ' ' ' ' ,"

2 3 4 10',

100K/T
Fig. 9
Temperature dependence of the nonradiative rate coefficient k,, of 10 ' . . . . . .
DPB in ethane at constant friction (D ; 4-10- 4 cm2/s): (0) exper- to I 1o 10 4 10
iment; dashed line: calculated from Eq. (5),with temperature-inde-
pendent parameters wO, and E (solv); solid line: calculated with tern- cm 2 s-/D
perature-dependent parameters (see section 3.4) Fig. II

Nonradiative rate coefficients k,, of DPB in ethane versus D" at
10 . different temperatures. The solid lines represent model calculations

(see section 3.4),
(0) T = 295 K, E0(solv) = 850 cm-1 (10.2 kJ/mol), mb = 0.38/ps
([3) T = 340 K, E0(solv) = 850 cm-1 (10.2 kJ/mol), cob = 0.80/ps
(A) T = 370 K, Eo(solv) = 850 cm- 1 (10,2 kJ/mol), UWb = 1.1/ps

Modelling kor(T) in this way [7,8] demonstrates that,the
higher activation energies in the intermediate friction re-
gimes as compared to the values we find in the low friction

10 10. region are caused predominantly by a significant increase of
10 cob with temperature - in the case of stilbene the effective

barrier height Eo(solv) actually seems to derease slightly as
the temperature increases. The temperature dependence of

10 10' 10 m 10' co, for DPB and stilbene in ethane and propane can be

cm2 s_1/D represented by the expression

Fig. 10 Wb(Tr) ; wb(Tr < 1) + aT(T,- 1)2 ; T, = T/T, (8)
Nonradiative rate coefficients k. of stilbene in ethane versus D-1
at different temperatures. The solid lines represent model calcula- where the first term is the COb-value from Table 2, T,, =
tions (see section 3.4).
(0) T = 298 K, Eo(solv) = 675 cm- 1 (8.1 kJ/mol), ot = 2.6/ps; 300 K, and ar takes the values 13.6/ps K2 for stilbene and
(0) T = 330 K, EO(solv) = 675 cm- 1 (8.1 kJjmol), Ob = 2.6/ps; 9.7/ps K2 for DPB.
(A) T = 356 K, Eo(solv) = 625 cm- 1 (7.5 kJ/mol), wb = 3.0/ps; We have discussed this temperature effect in detail [7,8]
(0) T = 375 K, Eo(solv) = 590 cm- 1 (7.1 ki/mol), (Ob= 4.0/ps and inspected one-dimensional barrier anharmonicity (i.e.

barrier shape effects) and multidimensional barrier crossing
DPB at intermediate friction in ethane for approximately as possible explanations for this behavior. Anharmonicity
constant D together with the temperature dependence pre- effects are by far too small to account for the observed large
dicted by Eqs. (5) and (6) (dashed curves) with input para- temperature coefficients [7]. We concluded that these de-
meters from Table 2. The discrepancy between experiment viations from the one-dimensional Kramers-model are
and model is quite pronounced. Additional information manifestations of multidimensional barrier crossing proc-
comes from the pressure dependence of ko, in ethane along esses. We propose that with increasing thermal excitation
different isotherms, Figs. 10 and 11. The solid curves in these of "perpendicular" low frequency modes the reaction path
plots correspond to fits obtained by allowing parameters on the potential energy surface may change because the
Eo(solv) and cOb to vary with temperature - the only way motion along the perpendicular coordinates has a much
our model can account for the shift and increasing broad- weaker friction dependence than the "main" reaction coor-
ening of the isotherms with temperature. If we use the tem- dinate. (This is equivalent to the model proposed by Agmon
perature variation of Eo(solv) and Wb found from fitting the and Kosloff [68] to explain the obserxed viscosity depend-



J. Schroeder: Photoisomerization in Dense Gases and Liquids 241

enceof stilbene at high friction). If the curvature of the further evidence for multidimensionality following their
barrier region increases with increasing perpendicular mode apalysis of multiexponential fluorescence decays for 3,3'-di-
amplitude - as shown schematically in Fig. 12 - the sys- methylstilbene [79], which they interpret as being caused
tern may cross the barrier at some distance from the saddle by phenyl ring motion on the same timescale as isomeri-
point, because the traversal time will be shorter and the zation. Photoisomerization of cis-stilbene also seems to ex-
.probability of recrossing consequently lower. Because dif- hibit multidimensional character [81].
fusion along the perpendicular coordinates is much faster, Neglecting differences in emphasis and argument, it seems
a :Boltzmann distribution can be maintained in this mode clear that experiments under a variety of conditions probe
whose high energy tail feeds the fast crossing channel. In a different details of the potential energy surface and begin to
different terminology this means that the separatrix of the reveal its multidimensional character. Whether the excited
system due to anisotropic friction shifts away from the sad- electronic reaction surface is modified by solute-solvent in-
dle point (73,74,80]. teractions or whether one is probing different reactions

paths on a solvent independent surface remains to be clar-
ified. In view of the experimental information available, a
simple one-dimensional picture is certainly no longer suffi-
cient. Though we did not find pressure dependent intrinsic
barriers for the smaller aikanes, which represent one of the
effects behind formal "activation volumes", this does not
necessarily mean that such effects may not be present in
higher alkane solvents. A complete separation of the ob-
served effects in terms of frequency dependent friction, pres-
sure and solvent dependent barrier shifts, and multidimen-
sional barrier crossing is a difficult task. It cannot be ac-
complished by the analysis of measurements at ambient

q. pressure alone. Additional studies of the temperature and
pressure dependence appear obligatory.

Fig. 12
Schematic representation of a potential energy surface V(qt, q2) 4. Conclusion
which shows a "sharpening" of the imaginary barrier frequency ob
of'the reaction coordinate qj, when a perpendicular coordinate q2 In the present article we have presented evidence for sol-
is excited (see section 3.4) vent-cluster induced modifications of the potential energy

surface for photoisomerization of stilbene and DPB. Our
We have described a simple model [7], showing that the anlysis allowed us to deduce the threshold energy for iso-

change of the effective curvature along the reaction path merization of solvated stilbene and DPB in a variety of
with the energy Ep in the perpendicular mode, e.g, cob ; solvents at low friction.
const. E. N, can lead to a corresponding temperature de- At intermediate friction, our analysis of the pressure de-
pendece OWb ,Z const. -T1. According to our model we find pendence showed that the hydrodynamic form of Kramers
for both stilbene and DPB n ,t 2. This would imply that equation is fully adequate to represent the observed de-
the degree of multidimensionality is similar for barrier cross- pendence of the rate coefficient on friction for DPB in sol-
ing in stilbene and DPB. vents up to dodecane. The observed solvent dependence can
- In this picture, the activation energies observed in liquid be reproduced neither by existing microfriction models nor
solution [5,62] at intermediate or high friction do not cor- by introducing rotational friction coefficients. By analogy
respond to the sum of an intrinsic and "viscous" barrier, but we suggest that microfriction effects are also not important
- in a formal sense - in addition reflect the temperature in stilbene photoisomerization. The hydrodynamic Kramers
dependence of the prefactor due to the multidimensional model also holds. for stilbene in small solvents. In hexane,
dynamics at intermediate friction. Only in the low friction deviations occur which possibly can be attributed to fre-
regime is the "intrinsic" barrier of the solvated molecule quency dependent friction effects.
directly related to the activation energy. In this sense, it does The solvent dependence of the rate coefficient turns out
not seem to be significant whether or not barrier heights to be a consequence of a variation of potential surface par-
determined under isolated molecule conditions agree with ameters. Their apparent variation with temperature is a
isoviscous activation energies measured in liquid solution. manifestation of the multidimensional character of the bar-

Recently, Park and Waldeck [78] have inferred the mul- rier crossing process in both stilbene and DPB. Most prob.
tidimensional natuIz of the barrier crossing from a slight ably, however, the multidimensionality is not responsible for
increase of isoviscous activation energies of -,4'-dimethyl- deviations from an inverse viscosit) dependence in higher
stilbene with viscosity in a series of n-alkanes. The evidence alkane solvents, because DPB and stilbene behave differ-
is not very conclusive, however, as solvent size effects could entl) under these conditions, whereas the pressure depend-
also be involved and the general caveat concerning iso is- ence of "stifF-btilbene, "here the phenyl rings are fixed
cosity plots remains, as the authors note. The) put foriward in a fi%e membered ring .ontaining the eth)lenii. carbon
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atoms, the-nonradiative rate coefficients show a behaviour [19] S. H. Courtney, M. '.W. Balk, L. A. Philips, S. P. Webb, D.
almost identical to that observed-for stilbene [82]. Yang, D. H. Levy, and G. R. Fleming, J. Chem. Phys 89, 6697

(1988).
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High Pressure NMR Studies of the Kramers Turnover for Reactions in
Liquid Solutions

J. Jonas and X. Peng

Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Chemical Kinetics I High Pressure / Liquids / Solutions /
Spectroscopy, Nuclear Magnetic Resonance

Advantages of NMR techniques to obtain the rate data for simple isomerizations in liquid solutions and
advantages of using high pressure to change the viscosity of the solution are discussed. After a brief
overview of our experiments on cyclohexane, 1,1-difluorocyclohexaiie, and N,N.dimethyltrichloroacet-
amide, the discussion focuses on the ethylene rotation in n-cyclopentadienylethylenetetrafluoroethylene-
rhodium in several solvents. - The experimental data, as interpreted in terms of stochastic models of
isomerization reactions, indicate a Kramers turnover for the pressure dependence of the rotation of
coordinated ethylene in the Rh complex in solution. In fact, the observation of the energy-controlled
regime in this system may be the consequence of the so-called heavy metal atom bottleneck effect-which
reduces the intramolecular energy transfer within the molecule. The experimental dependences of the rates
upon solvent viscosity and/or Enskog collision frequency show that solvent shear viscosity represents only

an approximative measure of the coupling of the reaction coordinate to the medium.

1. Introduction isomerization reactions, the stochastic models propose a de-

It is quite remarkable to note the current level of activity pendence of the transmission coefficient K upon so-called
[1-4] in both theoretical and experimental studies which "collision frequency" a, which reflects the actual coupling of
can trace back their origin to the seminal Kramers work the reaction coordinate to the surrounding medium. Ac-
[5] published in 1940. cording to theoretical models, the transmission coefficient K

According to theoretical models [6-10] describing the is found to be a strong nonmonotonic function of a with
dynamical solvent effects on reaction rates in liquid solu- two different limits. Activation due to collision rate is lim-
tions, the reaction coordinate is coupled to the solvent, en- iting and K is proportional to 2 for the energy-controlled
abling the system to gain sufficient energy to cross the bar- regime at lovv collision frequencies. At high collision fre-
rier, lose energy, and become trapped into the product "ell. quencies in the diffusive regime, particles which have crossed
In absence of electrostatic interactions, this coupling is pro- but not yet cleared the barrier may suffer collisions and
duced by collisions between the solvent and solute mole- recrobs the barrier. The reaction in this limit is said to be
cules. In contrast to classical transition state theories for diffusion controlled and the rate is inersel) proportional
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to a. Between these two regimes there is a nonmonotonic ligands, however, this effect was not observed for another
,transition, Kramers turnover (crossover). system [20].In our laboratory we observed such turnover behavior In our recent studies [21,22] we investigated the effects
for the chair-chair inversion of cyclohexane in several sol- of temperature and pressure on the internal rotation rate of
vents [11]. Hochstrasser et al. [12] have reported Kramers coordinated ethylene in it-cyclopentadienyldiethylenerhod-
turnover region in the isomerization of trans-stilbene by ium and n-cyclopentadienylethylenetetrafluoroethylene-
using high pressure gaseous ethane. Troe et al. [13] have rhodium in several liquid solvents. Fig. I shows the molec-
also observed Kramers turnover for trans-stilbene combin- ular structure of the Rh complexes. It was found that the
ing experiments performed both in liquid and in gas at high rotation of coordinated ethylene is initially accelerated by
pressure. However, the great majority of systems [2,14] pressure, reaches a maximum and then decreases at high
studied in dense liquid media show the high friction behav- pressure. The experimental data, as interpreted in terms of
ior. stochastic models of isomerization reactions, indicate a Kra-

It was not surprising that our results for isomerization of mers turnover for the pressure dependence of the rotation
cyclohexane were met with a considerable degree of skep- of coordinated ethylene in the Rh complexes. The obser-
ticism as the prevalent view was that the rapid internal en- vation of the energy controlled regime in this system may
ergy flow would prevent observation of the low friction re- be the consequence of the so-called heavy metal atom bott-
gime in dense liquid solvents. However, in their multidi- leneck effect which reduces the intramolecular energy trans-
mensional molecular dynamics calculations, Chandler et al. fer within the molecule. Table I summarizes the results of
[15] have reported that observation of the inertial behavior our experimental studies dealing with the dynamical solvent
depends strongly on the relative strength between the inter- effects on reaction rates in dense liquid solvents.
molecular coupling and the intramolecular coupling. They This contribution has several goals. First, we shall discuss
concluded that the RRKM picture of unimolecular kinetics the advantages of using pressure as an experimental variable
does not describe cyclohexane isomerization in liquid so- together with an indication of relative merits of high reso-
lutions as the energy exchange between the molecule and lution NMR techiques to investigate reaction rates in liquid
the stochastic bath occurs with similar ease as the energy solution. Second, the question of Kramers turnover for
rearrangement among intramolecular modes. isomerization of cyclohexane and 1,1-difluorocyclohexane

Clearly, the inefficient internal energy flow is the key in- will be briefly revisited. Third, the study of temperature and
gredient in order to observe the energy controlled regime pressure effects on ethylene rotation in n-cyclopentadienyl-
or the Kramers turnover for a system in dense solvent fluids, ethylenetetrafluoroethylenerhodium in several liquid sol-
Therefore, we turned our attention to systems where we may vents will be reviewed with the aim showing that viscosity
expect an inefficient internal energy flow [16]. The theoret- represents only an approximate measure of the coupling of
ical predictions by Marcus et al. [17] and by Uzer and the reaction coordinate to the reaction medium.
Hynes [18] about the heavy metal atom bottleneck effect
on internal energy redistribution in a molecule provided the Experimental
main motivation for our experiments dealing with Rh com- For studies listed in Table 1, the experimental procedures and
plexes in liquid solutions. Experimental studies on several equipment have been discussed in detail in the original references
organometallic compounds [19] have also suggested that a [11,21-24]. Thus, only a few comments about our experiments
heavy metal atom acted as a barrier which reduced the rate dealing with ethylene rotation in n-cyclopentadienylethylenetetra-
of intramolecular vibrational energy transfer between the fluoroethylenerhodium will be made.

The high resolution FT NMR experiments were performed on
the 300 MHz NMR spectrometer (GN-300) which was equipped

Molecular Structure of Rh Complexes with an Oxford Instruments, Inc. super-conducting 7.0 Tesla mag-

Table I
Summary of recent results

System Process Result Ref.

Cyclohexane Conformational Kramers [11]
Isomerization Turnover

!,!-difluorocyclohexane Conformational ? [23]
Isomerization

N,N-Dimethyltrichloro- Hindered Diffusive [24]
acetamide Rotation Regime

(CH,)Rh(C2H4)2  (C2H5)Rh(q2F4)(C2H4) n-cyclopentadienyldiethylene- Ethylene Inertial [21]
rhodium Rotation Regime

Fig. I n-cyclopentadienylethylenetetra- Ethylene Kramers [22]
Molecular structure of :t-cycopentadien)ldiethylenerhodium and fluoreth.lenerhudium Rotatiun Turnover
tr-cyclopentadienylethylenetetrafluoroethylenerhodium
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net. A.commercial GN-300 variable temperatureprobe was used However, there are some disadvantages connected with
for thetemperature study and a homebuilt, high-resolution, high- the use of the NMR line shape technique [25] to calculate
pressure NMR probe was used for the pressure study. This probe the experimental rates. For this technique to be applicable,
has an exceptional resolution of 1 part in 10' for 8 mm sample
without spinning, and allows one to achieve pressures up to.5000 motions must fall within a narrow timescale and the re-
,bar. The rate constantswere obtained from the NMR spectra by stricted range of measurable rates leads to a relatively large
the.complete lineshape analysis using the'iterative lineshape anal- error- in determined activation parameters. This inherent
ysis proposed by Jonas et al. [25]. weakness" of the NMR lineshape analysis approach can be

overcome in studies currently in progress in our laboratory
Results and Discussion using the NMR rotating frame technique [28] to measure

In all our studies we used-high-pressure, high-resolution rates. For example, for cyclohexane the highest measurable
NMR techniques to investigate the dynamical solvent effects rate by the NMR lineshape technique is about 5 101 s -,
on the reaction rates in liquid solutions. It is appropriate to whereas the NMR rotating frame method allows one to
comment on the importance of using pressure as an exper- measure rates up to 5.10' s '.
imental variable in the studies of dynamical solvent effects In the following we, shall discuss selected results obtained
on reaction rates, as the collision frequency which reflects in our studies listed in Table 1. In order to clarify our dis-
the coupling of the reaction coordinate to the medium can cussion we have to mention several equations used in our
be related through simple hydrodynamic arguments to shear analysis of the experimental data.
viscosity q/. The collision frequeny a in different solvents is The stochastic models introduce a transmission coefficient
given by the coefficient of friction to account for the collision effect on reaction rates as

a = c (1) kb, = K' krsr, (4)

and the molecular mass m of the solute. An estimate for C where kob, is the observed isomerization rate and kTsr is that
can be obtained by applying the Stokes law predicted by the classical transition state theory given by

= c q /2) (2) m kbT -A G * (5)k = -- ex I----- (5)
where a is the hard-core diameter and the c is equal to 4 in h e RT
the slipping boundary limit, whereas it is 6 for the sticking with the symbols having their usual meaning.
boundary limit. Both theoretical [26] and experimental [27] The relationship between the transmission coefficient K
studies show that the slipping boundary conditions are ap- and the solvent viscosity provides a practical way to discuss
propriate for cases discussed in our experiments. Therefore, the isomerization dynamics. Since K and kTsr cannot be de-
the collision frequency is given by termined independently [11,23], we must evaluate the ratio

2n of K(4)[r(qo). The normalized transmission coefficient can
a= -PI . (3) be obtained from

In most studies the shear viscosity q is changed by the use K (1) k(q) exp ((P - Po) AVijr (6)
of different solvents but in the high pressure experiment, c_(i1o) - kO(ujo) ,p RT
viscosity can be varied by changing pressure. One has to
realize that viscosity represents only an approximative where K(Qo) and k(Qo) are the transmission coefficient and
measure of the degree of coupling of the reaction coordinate the observed rate constant at a chosen reference point. Po
to the reaction medium and consequently by changing sol- is pressure at the reference point.
vents one may influence the reaction rate by different mo- Fig. 2 shows the schematic dependence of the normalized
lecular shape, size, or strength of the intermolecular inter- transmission coefficient upon viscosity tj and AVr~t as gen-
actions of the solvent molecule used. Therefore, different crated from the experimental data for cyclohexane isomer-
solvents of the same shear viscosity may not have the same ization [11,23] in several dense solvents. In our original
effect on the reaction rate measured. Clearly, using the same work we calculated the A VsT = - 1.5 cm3/mol which com-
solvent and changing its viscosity by pressure represents a pares favorably with the value A VitT = -1 9 cm3/mol given
much cleaner experiment, by Le Noble [11]. From Fig. 2, we see that the actual de-

As most of the studies of simple isomerization reactions pendence of the normalized transmission coefficient is a sen-
involve laser spectroscopic techniques, one should also com- sitive function of the AVjI, value. In addition, we also dis-
ment on the relative merits of the NMR technique. There cussed in detail why AVAS 1 should be pressure independent.
are several advantages of using NMR to study isomeriza- Nevertheless, even if our estimate of A"ASI was off by
tion, and hindered rotation in liquid solutions. The system 0.5 - 1.0 cm,'mol, the experimental data will still exhibit
chosen can be very simple and the molecule can be studied inertial behavior for isomerization of c)clohexane in dense
in its ground state. For example, the chair-chair isomeri- liquid solvents.
zation of cyclohexane is a relatively simple process which The situation is not that straightfor%%ard for isomerization
can be characterized by two degress of freedom. of 1,1 -difluorocyclohexane (DFCH) as show n in Fig. 3. For
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,DFCHisomerization we assumed A Vr = -1.5 cm3/mol bond of N,N-dimethyltrichloroacetamide (DMTCA) has
basing our estimate on analogy with cyclohexane. It is un- been studied at 282.3 K in n-pentane and methylcyclohexane
likely that-A Va-r for DFCH isomerization is greatly different solvents using the high-resolution, high-pressure nuclear
from, that- of cyclohexane. However, we cannot rule out the magnetic resonance (NMR) technique. The experimental ro-
possibility that AVT=* may be -2.0 or -"2.5 cm 3/mol which tation rate k decreases with increasing pressure in both sol-
would bring the isomerization clearly in the diffusion con- vents and the correlation of the rates with solvent viscosity
trolled regime. Therefore, on the basis of the experimental q shows that the rotation falls into the strongly coupled
data [23] obtained, we cannot determine with certainty diffusive regime. Interpretation of the experimental k vs. q/
whether DFCH isomerization exhibits inertial behavior, dependence in terms of the Kramers model fails to account

for the leveling off of the rate constant at high viscosities.
The Grote-Hynes theoretical model [29], which assumes
frequency-dependent friction, reproduces well the observed
rate behavior with viscosity of the solvent.

Another study [22] listed in Table 1 dealt with the effect
of temperature and pressure on the internal rotation rate of
coordinated ethylene in nt-cyclopentadienylethylenetetra-

______ fluoroethylenerhodium in liquid solution. The solvents used
1.05 in this study were n-pentane-d, carbon disulfide and me-

thyleyclohexane-d 4 . The activation energy (56.3 - 0.84 kJ/
,-s o' ~Z mol) for the internal rotation of ethylene was independent

.8 .. /of solvent and pressure as determined from conventional

.75 Arrhenius type plots and isoviscosity plots. It was found
' i' that the rotation of the coordinated ethylene is initially ac-

0 ,celerated by pressure, reaches a maximum and then de-
20V - , creases at high pressure. The strong pressure dependence of

the observed activation volume for the rotation suggested a
strong collisional contribution to the activation volume and

Fig. 2 the presence of dynamical solvent effects. The experimental
Schematic dependence of normalized experimental transmission data, as interpreted in terms of stochastic models of isom-
coefficient c(q)/K(3cP) upon shear viscosity and AVTisT for confor- erization reactions, indicated a Kramers turnover for the
mational isomerization of cyclohexane at 228 K (for details, see pressure dependence of the rotation of coordinated ethyleneRef. [11I])prsuedpnecofterttoofcodntdthle in the Rh complex in solution. In fact, the observation of

scs 0285-2 the energy-controlled regime in this system may be the con-
sequence of the so-called heavy metal atom bottleneck effect
which reduces the intramolecular energy transfer within the
molecule.1.35-

SCS 0212-9
1.25- 24 -

,c(3cP) 1.05 '

20-

.85 1 00000 0 00.75 8 0

°*

Fig. 3 12
Schematic dependence of normalized experimental transmission co-
efficient K(1)/K(3cP) upon shear viscosity q and AVst for confor-
mational isomerization of 1,2-difluorocyclohexane in the tempera-
ture range 218-253 K (for details, see Ref. [23]) 8 5 1 1 2 20 5 10 15 20 25 30

In contrast to the results for cyclohexane and DFCH we Fig 4 17 (cP)
found that the hindered rotation of N,N-dimethyltrichlo- Fg

The preexponential factor k* as a function of solvent shear viscosity
roacetamide [24] falls into the diffusive regime. The pressure at 258.2 and 273.2 K for methylycloliexan-d 4 ,O), n-pentanc-d12
dependence of the hindered rotation about the amide C-N (A) and CS, (0)
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ln the'following section, we shall focus onthe experimen- 24
tal finding that the observed pressure dependence of ethylene
rotation of the Rh complex studied was very different in the
methylcyclohexane solvent-than the dependence obtained
for the CS2 and n-pentane solvents. This striking difference 20
in viscosity dependence for the solvents used is depicted in ,_ n o 'o "
Fig. 4, which plots the preexpontential factor k* as a func- 7" a 0o 6,hAn
tion of solvent viscosity 'I for the ethylene rotation in 0 16- % O" 13
n-cyclopentadienylethylenetetrafluoroethylenerhodium. ,- AA £ 61 0
The conventional definition of the preexponential factor [8] x A 0
is used ,

12 A
ko. - k exp(-Ed/,RT). (7)

Fig. 4 shows that within experimental error, the preexpo- 8 . . ' * '
neitial factor is almost the same for CS2 and n-pentane-dji, 3 4 5 6 7 8 9 10
solvents. One should also mention that the Kramcrs turn- -
over occurs at relatively high viscosity ,,-7 cP for methyl- 0E ( )
cyclohexane-d14 while viscosity is 2 cP for the turnover point Fig. 6
both for n-pentane-d 2 and CS, solvents. The. Skinner- The preexponential factor k* as a function of Enskog collision
Wolynes model (8] fits well the experimental data for CS2  frequency ap for ethylene rotation i6 (C5Hj)Rh(CIH4 )(C2 F4) at
and n-pentane-d12 solvents but itdoes not fit the data for 258.2 K and 283.2 K for methylcyclohexancd, 4 (0); n-pcntane.diz
the most vinous solvent of methylcyclohexane-dt 4. It is Cv- (A) and CS. (),

ident from Fig. 4 that the preexponential factor k* is rela-
tively insensitive to viscosity changes in methylcyclohexane curred at 6-7 ps - . However, so far there is no explanation
solvent, particularly for high~viscosity values, why k* in methylcyclohexane solvent is consistently lower

In order to look for an explanation of this experimental than its values ii the other two solvents.
finding, we follow the suggestion by Garrity and Skinner Naturally, there may be other reasons for this unusual
(30] that viscosity increases faster than the collision fre- behavior for the methylcyclohexane solvent. For example,
quency for high packing fractions. Therefore we calculated in our earlier high-pressure studies (31] of self-diffusion and
the Enskog hard sphere collision frequency a for the sol- viscosity in liquid methylcyclohexane in the dense liquid
vents used and plotted ap as a function of viscosity in Fig. 3. region, we found that the rough hard sphere model is not
Indeed, this figure shows that the viscosity of methylcyclo- strictly applicable for this liquid. In order to obtain an agree-
hexane-d, 4 solvent increases rapidly while the collision fre- ment betweeji experiment and theory, we had to assume that
quency aE falls in the same range as the collision frequency the degree ,fcoupling between the rotational and transla-
for CS2 and n-pentane-d, 2 solvents. If one plots the preex- tional motions is strongly temperature dependent. One

ponential factor k* versus the Enskogcollision frequency should also point out that it has been reported in the study
aE as shown in Fig. 6, one concludes that the results for the, of stilbenre isomerization (321 that the data point for meth-
methylcyclohexane solvent are consistent with the other two ylcyclohexane solvent deviated strongly from the relation-
solvehts. In fact, the experimental k* values span the same ship found for other solvents.
collisional frequency range, and the Kramers turnover oc- In spite of the phenomenological nature of our discussion,

we can conclude that solvent viscosity represents only an
SC 2-i approximative measure of the degree of coupling of the re-

10 actions coordinate to the reaction medium and the rela-

8 0 O 0 tionship between reaction rates and solvent shear viscosity
0 0 0 may break down for high viscosity solvents at high packing

0 .,_,, fractions. Experiments aimed at improving our understand-
0 ing of isomerization processes in highly viscous liquids are

in progress in our laboratory by using the NMR rotating
frame techniques and extension of the high pressure limit

3from 5 kbar to 10 kbar.

0 This work was supported in part by the National Science Foun-
O 0 2 0 - dation under grant NSF CHE 85-09870.
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Femtosecond Studies of the Photoisomerization of cis-Stilbene in Solution
S. T. Repinec, R, J. Sension, and R. M. Hochstras. .-

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323

Fluorescence / Light, Absorpt-*on / Light, Emission / Liquids / Photochemistry /
Ultrafast Spectroscopy, Visible and Ultraviolet

Femtosecond laser studies on cis.stilbene photoisomerization in alkane solvents show a weak friction
dependence on the excited state lifetime. A possible barrier crossing process is indicated when these results
are compared with various potential models. The anisotropy values of the transient absorptions allow the
assignment of the various excited states to A type in C2 symmetry. Anisotropy measurements in the regions
of product ground state absorptions demonstrate a high alignrment between reactant cis and product trans
and a low alignment between cis and product dihydrophenant~irene (DHP) transition dipoles. These results
indicate a significant angular displacement of the ethylene bond during isomerization. In addition, time
resolved absorption studies detecting produL't tran fluorescence estimate an initial internal temperature

of 725 + 100 K which decays with ca. 14 ps time constant.

Introduction of the potential surface which has long been assumed to be

The isomerization of stilbene has been extensively studied barrierless as shown in Fig. 1 [1,2]. The cis-stilbene excited
as a model for photoinduced molecular rearrangement and state decays in ca. 1 ps in alkane solvents, forming cis, trans,
as a probe of solvent effects associated with isomerization and dihydiophenanthrene (DRxIP) with quantum yields of
and molecular rotation [1 - 5]. The isomerization of trans- 0.55, 0.35, and 0.1 respectively [6]. The rapid disappearance
stilbene in the first excited state involves a barrier crossing of the excited cis population makes possible the observation
process which takes many tens of picoseconds depending of spectra and dynamics of intermediates and product
on solvent [4]. Vibrational cooling of excited trans-stilbene fosrned during the isomerization [2,7]. Vibrational energy
molecules occurs in about 20 ps, which is shorter than the transfer ma, also Le observed after the disappearance of cis
excited state lifetime [5]. Recent femtosecond experiments population [8]. In this paper ,oeral results are diSLused
have allowed the stud) of the isomerization from the ,is side % hil %ere obtainA b) transient absorption experiments

Ber. Bunsenges. Phis. Chem. 95 1 991, Au. 3 >t, [Cll I eria geselldiaJ n bll, If -6940 If einhen. 1991 0005-9021,91,0303-0246 S 3.50* .25, 0
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which probe&6ptically excitedcis-stilbene and fluorescence function limited rise and decays with a lifetime characteristic
experiments which measure the appearance of trans-stilbene of a particular alkane solvent. This indicates that any spec-
by exciting the trans molecules produced by the isomeri- tral shift arising from the population moving along a bar-
zation 'ind observing their fluorescence. rierless potential energy surface does not occur within our

time resolution

PROBE Excited

IA "1f'T /ff1PS Ii State

IV(8) I- -

1 hI T.

' " , Ground

T AH 180" 1800 180
TRANS ClS (a) (b) (c)

Fig. I
Potential energy diagram for stilbene ground and excited states Fig. 2
showing the transient absorption and fluorescence detection ex- Three possible models for the cls.stilbene ground and excited state
periments surfaces

Experimental Models for cis-Stilbene Isomerization

The laser system, transient absorption, and fluorescence experi. The transient absorption data allow the comparison of
ments have been described in detail elsewhere [2,8]. Briefly, a CPM the isomerization process with some simple models. Three
laser which is amplified in a four stage Nd:YAG pumped amplifier models which could possibly describe the excited state sur-
and then frequency doubled is used to excite cis-stilbene at 312 nm. face are shown in Fig. 2. Because cis-stilbene is not planar

For the transient absorption experiments' pro e wavelengths in due to the repulsion of the phenyl ring hydrogens there must
the visible are obtained by continuum generation in a cell of H20.
Narrow slices of the continuum are selected with a set of interfer- exist a double minimum around the 180' (cis) configuration
ence filters, This probe can aiso be frequency doubled to obtain as is shown in b. and c. of Fig. 2. The first potential in Fig.
wavelengths in the ultraviolet. 2 shows an inverted symmetric potential for the excited state.

In the fluorescence experiment a second pump beam at 312 nm The Brownian motion of a particle in a harmonic force field
is used to excite the trans-stilbene molecules created by the first
pump pulse. The fluorescence from the excited trans molecules is was first considered by Chandrasekhar [9]. The motion of
collected by a photomultiplier tube perpendicular to the pump a particle on an inverted well follows as a straightforward
beams, extension of this form [2]. The decay curve for excited state

A half-wave plate in the pump arm of both experiments allows cis-stilbene in hexane may be modeled as Brownian motion
the rotation orthe pump beam polarization to give the parallel and on an inverted well of frequency I = 4 x 1012 s-t. However,
perpendicular polarization geometries for anisotropy studies. when the empirical angular friction factor ,P appropriate for

hexane (P = 1.18 x 1011 s-') is replaced by the value ap-
Friction Dependence of Cis Relaxation propriate for hexadecane (jP = 5.88 x 1013 s - [10]) the

Transient absorption measurements carried out with cis- model predicts a much longer lifetime than is observed ex-
stilbene in a series of n-alkane solvents and at a number of perimentally. This model also predicts the wrong functional
probe wavelengths show a weak friction dependence [2]. form for the decay with the theoretical curves being highly
The excited state lifetime ranges from about I ps in hexane nonexponential due to Brownian motion on top of the po-
to 1.4 ps in hexadecane. Cis-stilbene exhibits transient ab- tential surface.
sorption spectra in the visible/IR and ultraviolet regions of The second potential drawn in Fig. 2 is a displaced in-
the spectrum. The visible/IR transient has peaks at 650 nm verted harmonic well. Brownian motion on this model po-
and 450 nm. The ultraviolet transient spectrum starts tential surface has many of the characteristics of the first
around 390 tm increasing toward higher energy where it surface in Fig. 2. It predicts a stronger friction dependence
overlaps with the ground state spectra. The viscosity data than observed experimentally. It also predicts improper
were taken at 650 nm in the visible and at 350 nm in the functional forms for the decay of electronically excited cis-
ultraviolet. The friction dependence-is similar for both the stilbene.
visible and the ultraviolet transients. In fact, across the entire The third model in Fig. 2 is one in which cis-stilbene is
spectrum the transient absorption rises with an instrument excited into shallow wells displaced from 180 . A compari-
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son of the data to a one dimensional Kramers equation gives after the decay of the. cis- population. The DHP is formed
abarrier-on the order of Q = 3kT [2]. With a barrier this by a ring closing of the phenyl rings. In both spectral regions
size Kramers theory may not be valid but it does provide a the excited cis signal decays in 1.4 ps in hexadecane to a
qualitative prediction, along with the absence of excited cis- long time product absorption as seen in Fig. 3. This longer
stilbene spectral shifts, that the region where cis-stilbene time absorption partially decays due to vibrational cooling
manifests its transient absorption at times in excess of a few i.e. a spectral shift taking tens of picoseconds. The cis-stil-
hundred femtoseconds may be a shallow well on the poten- bene isomerization allows the measurement of the reaction
tial surface. dipole for two separate reaction pathways. The product an-

These results in the non-polar alkane solvents indicate isotropy at the earliest times remains high, r = 0.20 for cis
,the possible existence of a small barrier to isomerization in to trans and is r = 0.17 for cis to DHP. At longer times the
the cis side of the excited potential surface. Recent experi- anisotropy decays due to rotational diffusion but in hex-
ments by Fleming and co-workers show an early spectral adecane the conventional rotational relaxation time is long
shift in alcohol solvents [11]. This indicates that the poten- enough that it does not influence the interpretation of the
tial surface in these polar solvents is barrierless and confirms alignment of reactant and product.
the notion that the shape of the cis-stilbene excited state
surface is solvent dependent. 0.70 0.40

0

State Assignments 0 0.55 & Hexadecone -028 .

The measured anisotropy signal in a transient absorption .0. 4 0o 0 6_•x 0.0 00 -0.16 o
e x p e r i m e n t i s : "0 o ; % o 0 o 0 0

5 .2 0- 0
r I(t) - (t) 0 0 0.04

l(t) + 2J.(t) 0.10 -0.08

where Iu(t) and I(t) are the signal intensity for parallel and -0.05 -0.20
perpendicular pump and probe beam polarization respec- DELAY TIME (ps)
tively. This anisotropy measures the quantity: 0A33 TIME 3 n 0.40

r(t) 0.4KP 2[cos (t)]> .- 0.26 Hexadecone - 0.30 >o 0

0 a.

where ;P(t) is the instantaneous angle between the transition 'X 0.19 0 00 0 0 0.20 cr,
-dipoles in the pumpprobe transitions. The absorption ani- 000000 0

sotropy provides information on the symmetry of the states o 0.12 - 0.1 0.I
involved in the two-photon pump probe process. The ex- Z 0.05 0.00 <
citation of cis-stilbene at 312 nm involves an A-*B type

transition. The visible transients probed around 650 nm in -0.02 -0.10
both cis and trans-stilbene have anisotropies for the ground -3 1 5 9 13 17
to excited state dipoles near 0.4. A value of r = 0.4 is ihe DELAY TIME(ps)
maximum for this type of experiment. This indicates that
the transition dipole of the excited transition is nearly par- Fig. 3

alegtransition dipole pumped at 312 n. Mic angle transient absorption decay curves (solid lines) and
allel to that for the anisotropies (open circles) for excited cis.stilbene in hexadecane in
The cis-stilbene ultraviolet transient has r = 0.15 for a 350 the regions of trans-stilbene ground state (330 nm) and the dihy-
nm probe. The ground state of stilbene is of A type and the drophenanthrene absorption (480 nm)
first excited state is B therefore the positive anisotropies
indicate the upper levels in these pump-probe experiments The trans-stilbene S0-+S, transition dipole is known to
are of A type because excitations of A-* B--+B would give lie along the longest axis of the molecule [1, ]. The transition
r = -0.2. dipole for cis-stilbene has not been measured but a recent

calculation predicts the dipole to lie close to the ethylene
Reaction Coordinate bond [13]. The cis and trans transition dipoles for the

The ultraviolet absorption of cis-stilbene overlaps the ground to first excited state are shown in relation to the
ground state absorption of trans-stilbene in the region of molecules in Fig. 4. A simple exiton model predicts the DHP
330 nm. Anisotropies in this region give information on the (S--, Sj) transition to be directed perpendicular to the C2
reaction coordinate by measuring the alignment bet%%een the symmetry axis and along the longest pol)ene axis [14]. The
reactant cis and product trans molecules. The transient ab- measured anisotropies at times after the detay of the excited
sorption decay and anisotropy in hexadecane at 330 nm is cis population are quite high for both trans (r = 0.2) and
shown in Fig. 3. In the region between 420 nm and 520 nm DHP (r = 0.17). This indicates substantial alignment be-
the spectrum of dihydrophenanthrene (DHP) is observable teen the realtant and prudut transition dipoles.
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One model-to explain the high product anisotropies con- Such effects involving the coupling of internal and overall
siders the reaction product dipoles to lie on the surface of motions have been-considered by Moro for butane isom-
a cone around a line along the reactant cis-stilbene ethylene erization [16]. Our results indicate a reorientation of the
bond. The data indicate a cone angle ofabout 350 for trans- ethylene bond in both the cis to trans and cis to DHP re-
stilbene product and 380 for DHPin such a model. If the actions suggesting that if the motion is dominated by the
isomerization to trans-stilbene proceeded as a simple rota- coupling of internal and overall rotations it is most likely
tion about the double bond, as shown in Fig. 4, a cone angle to occur as a result of phenyl ring rotations common to
of 60' would be predicted from the trans and cis transition both the DHP and trans reaction coordinates. Additional
dipoles. This would lead to an anisotropy of r = -0.05. experimental and theoretical efforts are needed to separate
Since themeasured anisotropy is much greater it is possible these various angular motions.
that the isomerization is not a simple rotation about the
double as is usually assumed. The results require that the Vibrational Cooling
ethylene bond rotate by an angle of ca. 250 during the isom- Trans-stilbene molecules formed from the isomerization
erization in order to produce this high anisotropy. The DHP of cis can have excess internal energy. The ground state
product anisotropy of r = 0.17 indicates this reaction path- spectrum of the trans-stilbene product shifts with time con-
way also must involve a significant rotation of the ethylene stants on the order of 20 ± 10 ps [8]. The shift in the spec-
bond being a lower value than is expected for a simple ring trum and the decay of the longtime absorption in the tran-
closing with the ethylene bond axis fixed in space. sient absorption curves results from the difference between

the extinction coefficients of the hot and cold molecules. The
decay is slightly longer toward the absorption peak and

cis Sfaster on the edges. These observations suggest that the in-
ternal energy resulting from the isomerization can be gauged
by assuming a definite initial temperature achieved by dis-
tributing the excess energy over a substantial fraction of the
internal modes.

The fluorescence experiment on cis-stilbene in solution
was first done by Yoshihara and coworkers but with insuf-
ficient time resolution to measure the appearance of trans-

PERR stilbene [15]. The time resolution of the solution experi-
ments presented here is able to detect the ground state trans-
stilbene formation. The fluorescence experiment provides a
good measure for the cooling of trans molecules. As seen in
Fig. I after the formation of excited cis-stilbene by the pump

1 zbeam hot trans molecules are formed in ca. I ps. The hot
ground state trans molecules are excited after a time delay
(T) between the pulses and the integrated fluorescence signal

TRANS DELAY TIME (ps)

-110 -55 0.0 55 110>- Ic0

z 0
w
t- 80-

U 50 0

Fig. 4 Z -
Transition dipole directions for the isomerization of cis-stilbene. U
The simple rotation about the double bond relating these structures I 20
(cis, twisted, and trans) predicts a much lower anisotropy than is o
observed D

-10 -5.5 0 5.5 11.0
A full interpretation of the anisotropy must consider over-

all rotations in. the laboratory frame about a definite axis DELAY TIME (ps)
fixed in each molecule. To minimize the friction on the cis Fig. 5
to trans isomerization , the whole molecule may be forced Magic angle fluorescence intensit) of trani-stilbene as a function of
to rotate. Furthermore, the conrotatory motions of the delay time between the excitation pulse which excites ground state

cis-stilbene and the second pulse which excites the formed frans-phenyl rings of a cis-like structure must generate a torque stilbene product. The kIouN rise of the signal tibes because the hot
that could lead to a reorientation of the %%hole molecule. trans molculcz gcnciatcd Initiall, do nut fluorc rem il'iintl)
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is detected. For'time delay T --o the fluorescence excitation to trans-stilbene and dihydrophenanthrene requires rotation
pulse probes theroomtemperature trans molecules. Because of the ethylene bond in the laboratory frame. The trans-
the pump and fluorescence excitation beams are of approx- stilbene and DHP are formed with considerable internal
imately equal energy the trans fluorescence signal will be at energy. The rates of appearance of trans and DHP are not
a minimum at time zero and rise nearly symmetrically on significantly different from the disappearance of excited cis.
either side of zero delay as seen in Fig. 5. The data in Fig. 5 The hot trans molecules having already lost two-thirds of
is for cis-stilbene in hexadecane. The solid line fit of the data their excess energy when first detected cool with a charac-
is from a model that includes the variation of the fluores- teristic time of about 14 ± 3 ps.
cence quantum yield with temperature [8]. The quantum This research was supported by grants from NSF and NIH. We
yield changes as a result of the barrier to isomerization wish to thank Dr. G. Moro for helpful suggestions regarding the
which renders the fluorescence temperature dependent. The coupling of internal and external motions.
fit models the temperature decay as a single exponential with
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Two aspects of barrierless processes are discussed. Adiabatic processes are discussed briefly in the context
of diffusion to a sink. Second, a multi-level Redfield theory is developed as a model for rate processes
where vibrational relaxation and dephasing occur on the time scale of the electronic process. The results

of numerical calculations are presented and deviations from the Golden Rule predictions discussed.

Introduction tems with or without barriers. However, in the present paper
Kramers in his seniingl 1940 paper [1] considered the we restrict ourselves to systems where the barrier is rather

problem of escape over a Ootential,(or free energy) barrier, small.
'It is 4 natural extension of his ideas to include processes
that have little or no intrinsic barrier. Because of the intrinsic Theory
time scale of nuclear motion, barrierless processes in chem- 1. Adiabatic Processes
istry and biology are very rapid and their study has ad- In the adiabatic case, when the barrier is very small or
vaficed in parallel with developments in ultrafast laser spec- lacking, Bagchi, Fleming and Oxtoby [5,6] proposed a the-
troscopy. Examples of barrierless processes in chemistry in- ory in which the reactive motion is modeled by the damped
dude some isomerization reactions, a range of electron motion of a Brownian Iartidle on a potential surface. The
transfer reactions as well as many diffusion controlled re- ecay of population from the-i!tiial state occurs through a
actions in solution. Barrierless reactions also seem to be coop atopendentesnk. One sfate os trngha
common in biological processes. For example, the isomeri- coordinate dependent sink. Onis the ote most striking char-

zation reactioniigiering the visual process and the rebind- acteristics of such processes is the potential lack, of time scale

ing of CO. to heme in myoglobin are believed to lack bar- separation between reactive m, )n and the inverse "rate"

riers. .r..ps the most striking barrierless reaction in nature action. Clea:ly in this situation non-steady state dy-
ies.s the m ostarge setrin a ee r ion yntre namics might be rather common and the form of the pop-is the primary charge separation step-in photosynthesis. ulation decay depends on the competition between diffusive
Here the ultrafast initial electron transfer step (- 3 ps) ac- motion toward the sink and removal of population from the
tually speeds up 2-4 times as the temperature is lowered sink region. Many aspects of the diffusion to a sink model
from 300 K to 10 K [2]. Electronic energy transfer between have recently been discussed in detail [6] and here we re-
the prosthetic groups of the bacterial reaction center is even strict ourselves to some comments on the form of the pop-
faster than the electron transfer; recent estimates from hole ulation decay in various regimes.
burning [3] and ultrafast [4] spectroscopy place the energy In more quantitative terms the dynamics of the popula-
transfer rate in the 30-50 fs range. In this case the conven- tion decay can be described in terms of two rate constants,
tional separation between electronic and vibrational phase the time averaged rate, k, and the long time rate kL. These
relaxation and energy relaxation time scales is unlikely to
exist. are given by

In descriptions of barrier crossing processes two types of
approaches have been conventionally employed. For non- kF" = I P(t) dt
adiabatic processes the Golden Rule is used to calculate the 0

rate, whereas for adiabatic processes in the presence of dis- and
sipation Kramers theory provides an appropriate descrip-
tion. In the following section we briefly sketch theoretical kL = - lim lnP(t)
models appropriate to barrierless processes in these two lim- , t

its. In fact the second approach we describe - multi-level where P(t) is the population at time t. The dynamics of
Redfield theory - is applicable to both regimes and to sys- adiabatic barrierless processes are controlled primarily by

the dimiensionless parameter i o = koC./itw 2. Here k0 is the*) Present address: Department of Chemistry, Washington Uni- decay rate at the sink, C is the friction coefficient, p the
versity, St. Louis, MO 63130.

**) Present address. Department of Chemibtry, Columbia Univr- reduced mass and vi the radial frequenc) of the potential
sity, New York, NY 10027. surface. The parameter & effectively determines how long it
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takes to attain a steady state condition, after which the pop- vent or lattice modes, in determining the details of the dy-
ulation decay is exponential. A quantitative analysis can be namics. Much of this work, especially in the field of electron
made via an eigenvalue analysis of the Smoluchowski equa- transfer has taken a semi-classical path, in which the motion
tion [6], where the eigenvalues correspond- to the popula- along- a specific nuclear coordinate - the "reaction coor-
tion decay rates. For small values of E0 only the smallest dinate" - is treated classically incorporating the effects of
eigenvalue contributes to the observed decay due to the friction provided by the very large number of orthogonal
large gap between the lowest and next to lowest eigenvalues. degrees of freedom. In such a description quantum mechan-
As Eo is increased, the gap becomes smaller and more than ics enters only at the point of intersection between the dia-
one eigenvalue can fall within the dynamic range of the batic reactant and product surfaces. At this configuration
measurement. An interesting feature of this analysis is that the Schroedinger equation is solved to compute the prob-
in the region of large E, the density of the eigenvalue spec- ability of making a transition from one surface to another.
trum may be large enough that the observed dynamics will This standard surface hopping model has proved valuable
once again appear exponential due to the inability of the in understanding the role of friction in non-adiabatic proc-
instrument to resolve the various decay components. Thus esses and in understanding the transition.from non-adia-
the appearance of exponential population decay does not batic to adiabatic behavior in electron transfer [10]. In ul-
necessarily invalidate the possibility of non-steady state dy- trafast processes, even in the condensed phase at high tem-
namics. Recent experiments on the isomerization of cis-stil- peratures, the possibility exists that quantum interference
bene are consistent with this analysis [7] although the pres- effects play a role in the dynamics. The description of such
ence or absence of a small potential barrier is not fully es- effects does not fall in the realm of the standard surface
tablished at present [7-9]. Fluorescence decays in the hopping or Landau-Zener approach. Quantum effects will
lowest viscosity solvents appear exponential, but in the most be important when there are strong resonances or when
viscous solvent (largest hro), decanol, as Fig. I shows the phase is preserved on the time scale of the electronic tran-
decay is clearly non-exponential consistent with this solvent sition matrix element.
lying in the intermeditate ,o range. Onuchic and Wolynes [11] have recently presented a

semi-quantitative discussion rooted in trajectory based ar-
guments to describe quantum effects on dynamics. In this
paper we introduce a density matrix formalism based on
Redfield relaxation theory [12], appropriate to electron or
electronic energy transfer in molecular systems and which

U ".A.- ,.enables quantitative exploration of many of the issues raised
by, Onuchic and Wolynes. Redfield's theory has been widely
used in the field of magnetic resonance and to a lesser extent

" .~ in optical spectroscopy [13]. By explicitly treating a subset
of nuclear degrees of freedom quantum mechanically, and
through a judicious choice of representations, we develop a
multi-level theory that is valid for arbitrarily strong elec-
tronic coupling and properly takes account of the influence

00 of finite vibrational and electronic dephasing rates and vi-
--2 0 2 4 5 a 10 brational energy relaxation rates. Thus, the theory has the

Time (ps) property that it interpolates between the coherent and in-

Fig. 1 coherent limits of transport for sufficiently weak damping
Fluorescence decay of cis-stilbene in decanol detected at 430 ± 5 and between the adiabatic and nonadiabatic rate descrip-
nm. The intensity scale is logarithmic and the decay is clearly non- tions for over-damped systems. A significant feature of our
exponential approach is that parameters relating to vibrational relaxa-

tion and dephasing time scales are entered in the site rep-
An extensive review of barrierless dynamics in the context resentation where some experimentalist's intuition can be

of a diffusional approach has recently appeared and inter- brought to bear in setting the magnitudes of the parameters.
ested readers are referred to that article for further details In addition, the light-matter interaction is included explicitly
[6]. in the Hamiltonian so that in experiments involving optical

preparation the initial state may be properly specified.2. Nonadiabatic Processes

The diffusion to a sink model can roughly account for
some effects of nonadiabiticity via finite decay rate models 3. Formalism
[6], but the approach is purely classical. In this section %ve A detailed description of the formalism will be gi~en else-
sketch our initial efforts to develop a fully quantum me- %here [14]. Here we give some brief details of the approach
chanical model for such processes. Much effort has been and set up a simple model of electron transfer.
expended over the past decade in attempting to take into The effe"htie Hamiltonman .onsidered as a model for dec-
account the role of nuclear motion, including collective sol- tion transfer betNeen elet.tronik states 11, and 12, is
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H= [H1(Q)+ V(q,Q)]jl><lj+[H2(Q)+ V2(q,Q)]12>(21 propriate form for the fluctuation operators, V,(q,Q), we
can calculate the appropriate energy and phase relaxation

+ J[1l> (21 + 12> (I] + HsF. rates in the site representation. To properly describe ,the
dissipative processes in the eigenstate representation, we

Q refers to the single system coordinate (i.e. "reaction coor- perform the same canonical transformation on the fluctua-
dinate") and q to the set of bath coordinates. In what follows, tion operators that we used to diagonalize the system Ham-
the reaction coordinate is treated quantum mechanically in iltonian [15]. We thus transform the problem of two man-
order to properly incorporate the effect of finite vibrational ifolds undergoing electron transfer and relaxation to a single
relaxation and dephasing times. The remaining degrees of manifold undergoing only relaxation processes.
freedom (solvent or lattice modes) are assumed to relax The dynamics of the system are found by solving the
quickly compared to motion along Q and are thus treated Redfield equations for the reduced density operator in the
as a thermal reservoir. The operators H, (i = 1,2) are effective eigenstate representation [12,16]. This involves treating the
Hamiltonians for sites I and 2 and are averaged over the system-bath interaction to secound-order. The appropriate
bath variables. V(qQ) is the operator coupling state (i) to equations are of the form
the bath and represents fluctuations in the system energies
from their canonical averages. V, (q, Q) is chosen so that dy = -io0 + t
both population relaxation and pure dephasing interactions
are present. the exchange interaction giving rise to electron
transfer is denoted by J. Finally, HsF is the system field The elements of the Redfield tensor (R1jkl) describe the var-
interaction which determines the nature of the initially pho- ious relaxation processes involving the system eigenstates.
toexcited state. It is important to note that the states labelled by ij are

In second quantized notation, the system Hamiltonian is admixtures of vibronic states belonging to states I1> and
12>.

H,y, = A {ll> (1 - 12> <21} + gy(b+b +) I1> <11 Once the dynamics are computed by finding the eigen-
values and eigenvectors of the Redfield tensor, we transform

+ g2(b+ b ) 12> <21 back to our original basis of site states and trace over the

+ J{l1) (21 + J{l> <21 + 12> (11) reactant manifold to obtain the population-of state I1>. In
addition to correctly incorporating quantum effects, which

where J = E, + g2/ I - (E. + g'/w2) is the energy dif- arise from the persistence of phase coherence, the procedure
IAO 2described above is nonperturbative in the electronic cou-

ference between the origins of the two excited electronic piing, J, and thus interpolates between the weak and strong
states and gi is the displacement (in energy units) of excited
state i. b + and b are the creation and annihilation operators c~uplinglimits.
for the system coordinate.

The system-bath interaction, V(q,Q), is parametrized by Numerical Results
matrix elements of the fluctuating bath variables between Fig. 2 shows adiabatic potential surfaces for a typical
the system states. The rate constant for vibrational relaxa- system we have studied. Note that the diabatic surfaces cross
tion between states it and n - I is given by, - = ny' 2  close to the minimum of the reactant well and thus the
where y' is the off-diagonal fluctuation constant. Similarly electron transfer process is activationless (i.e. at the Marcus
the pure dephasing rate for levels in and n is given by maximum).

M. = (in - n) y where y is the diagonal fluctuation con- The first set of calculations we describe uses a very short
stant. excitation pulse to prepare an initial state that can be written

The picture described by our model Hamiltonian is thus as a coherent superposition of vibronic states. The transition
two displaced wells, each with a manifold of vibrational dipole operator is chosen such that only vibrational states
levels, undergoing relaxation and dephasing coupled by a in state II> are initially excited. The pulse is short enough
purely electronic interaction that leads to a splitting of the that the entire bandwidth is coherently prepared, leading to
surfaces in the crossing region. The multilevel nature of the a wavepacket that is localized at the value of Q correspond-
model does not allow for an analytical solution for the dy- ing to the minimum of the ground state geometry (Q = 0).
namics, thus we rely on numerical procedures. However, the The populations and phase coherence are determined by the
dynamics that emerge provide a realistic description of the appropriate Franck-Condon factors, via
competition between dissipative processes such as popula-
tion relaxation and pure dephasing and coherent exchange. g = - [HsF, Q]; HsF = -E(t).
A detailed discussion of the strategy for solving for the dy-
namics of our model will be given elsewhere [14]. In brief, This is the appropriate form for the Liouville equation in
we choose to work in a basis that diagonaliLes that part of the impulsive excitation limit (i.e. when the temporal width
the Hamiltonian that depends only on the system coordinate of the excitation pulse is short compared to any free motion
and the electronic exchange interaction. We call this rep- of the system).
resentation the eigenstate representation and the original The population remaining in state 11 as a function of
representation the site representation. By choosing an ap- time %Nas calculated as the electronic coupling, J, %Nas pro-
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8 -51 where FCis the Franck-Condon factor, and SE the energy
8 .5 mismatch-between initial and final vibronic levels, F is the

7;5 level width and contains contributions from both.T And T2
iprocesses. Thus the Golden Rule rate scales as J2/F for small

> 6.5 8E (near resonance case), however for finite SE the rate
") initially increases with increasing level width, then turns

5.5 over. Fig. 3 shows how the Redfield rate, defined as the 1/
4.5 e decay time, scales with J2. In this particular system, the

rate follows the Golden Rule up to about J = 15 cm 1. For
4. 3.5 higher J values the rate becomes progressively faster than

• the-Golden Rule prediction. The vibrational frequency in
2. 5 this case is w = 180 cm- 1. For calibration purposes, we
1.5 4 note that the electronic coupling describing the primary

charge separation in photosynthesis is estimated to be in
0.5 the range 20-30 cm-V [2].

The Golden Rule breaks down when the effective elec-
-0.5 i tronic coupling strength gives rise to transfer on a time scale

-4 -3 -2 -1 0 1 2 3 4 that is competitive with the population relaxation and de-
Q phasing processes that lead to equilibration in the reactant

Fig. 2 well. A particularly useful way ofunderstanding the break-
Initial and final state potential surfaces for a typical activationless down of the Golden Rule approximation may be obtained
process. The minima of the two states are at Q ±0.72, Here Q by looking at the ensemble averaged value of the coordinate
is a dimensionless coordinate defined'by Q = (Mo/A)"t2q where M
is the mass w the frequency and q the actual coordinate operator as a function of time calculated from

<Q(t)> = Tr[e(t)Ql.

1.5 The initial excitation pulse is such that a number of vibra-
tional levels are coherently prepared. This leads to an av-

1. 2 - erage value for Q that is initially displaced from the mini-
.- mum of state I1>. The subsequent ensemble averaged tra -;

-- " jectory shows in a detailbd'eay the competition between the
0.9 - .electronic coupling which tends to take <Q> to values cor-

resj5qonding to state 12> and dephasing which leads to values
of <Q> corresponding to the equilibrium configuration of

0. 4 the reactant state. Fig. 4 shows such a plot for J = 0. The
oscillatory motion is due to the vibrational coherence which

0 , , , . I

0 100 200 2 300 400 0

Fig. 3
l/e decay time vs. the square of the electronic coupling calculated
from Redfield equations. The Golden Rule prediction is shown for
comparison. Parameters are: o = wz = 190 cm - ', 4 = 200 cm -1,
g, = -95 cm-', 92 = 95 cm - , T = 298 K. The diagonal and off-
diagonal fluctuation constants are y2 = 9.0 cm-'y 2 = 4.0 cm- 1. "(
Q = ±0.72 for states I) and 12>, respectively. The dashed line 0." 2shows the extrapolation of the Golden Rule J1 dependence

E

I-

gressively increased. In a multilevel system, such as de-
scribed here, the effective coupling strength will vary with 3-
each initial level due to varying Franck-Condon factors be-
tween states in different manifolds. If dephasing is much
faster than the time scale of the electronic coupling then the 4 1-1. 1,1.

Golden Rule expression should be valid, with the rate con- -1. -1.2 -0.8 -0 4 0 0.4

stant given by < W(t)>

272 hFig. 4
k 2(FC) Ensemble-averaged value for the reaction coordinate, (Q(t)>, as a

h 2 (BE)2 + (iI) 2 function of time for the parameters of Fig. 3. J = 4.0 cm-
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damps out due to the system-bath interaction. In this case The interaction between electronic and vibrational co-
the dephasing time is approximately 600 fs. herence is even more evident in Fig. 7 where the ensemble

Fig. 5 shows a similar plot for J = 4 cm- ' The motion averaged energy (H(t)>, is plotted against the ensemble av-
of population-into the final state is revealed by the pro- eraged coordinate <Q(t)>, for a somewhat different set of
gressive increase in the value of <Q>. All coherence has parameters (see figure caption). The corresponding popu-
vanished before any significant increase in <Q> from the lation decay is shown in Fig. 8. Aside from a brief induction
value - Qo has occurred. In this case the Golden Rule and period during the first 100 fs, the decay is quite exponential
Redfield rates are identical. By contrast, Fig. 6 shows results and experimentally there would be little to indicate that
for J = 12 cm- , just at the point where the Golden Rule phase coherence was playing a significant role. However, in
expression breaks down. Here, the vibrational coherence this case the decay time of 1.7 ps is approximately three
persists as population is depleted from the initial electronic times faster than the Golden Rule prediction.
state. The stutter seen in the oscillation at about 1.6 ps
results from the interference between the electronic coher-
ence, oscillating at a frequency of 2J, and the vibrational Av alp Energy vo Averap

coherence, oscillating at the vibrational frequency.
1.5

0-

2" A

V 4.
' 0.5
E 6-

- 0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1 0- 1Fig. 7
Ensemble.averaged energy, (11(t)>, vs. ensemble-averaged coordi-

-1.6 -1.2 -0.8 -0.4 0 0.4 nate, <Q()>, Parameters are: o = w.= 400 cm-,-A = 400 cm- 1,
g,(t) , -- 150 cm - , g2 = 150 cm-' , T = 298 K; J = 10.0 cm - ,

Fig. 5 7- 4.0 cm- '' 2 = 4.0 cm- 1. The minima of the two states are at
Ensemble-averaged value for the reaction coordinate, <Q(t)>, as a Q = ±0.53 in this calculation
function of time for the parameters of Fig. 3. J = 4.0 cm"

Redfield Dynamic*

0

0. 8

Clb 00.6.- 0-

aa

a 80.8

3
0.2

4 0 1, o

-1.6 -1.2 -0.8 -0.4 0 0.4 0 2 4 6 8 10 12 14 16 18 20
<0(t)> Time (ps)

Fig. 6 Fig. 8
Ensemble-averaged value for the rea ttion woordinatc, (Qt),, as a Populttion of initial tatc .a fu.ntLUn of tim . for the padametcrb
function of time for the parameters of Fig. 3. J = 12.0 cm -1 of Fig. 7
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In general, it is difficultto predict the range of validity of The method described above presents a realistic approach
the Golden Ruleformula or even the nature of deviations to understanding chemical rate processes when the dynam-
from the Golden Rule in multi-leel systems. The increased ics are complicated bythe presence of vibrational relaxation
complexity brought about by having many coupled levels and dephasing on the time scale of the electronic transition.
with different dephasing times and effective J-values can lead
to a wide range of behaviours depending on parameter val- Summary
ues and even on-the nature of the initial state. In the casejustdisussd, igniicat ehanemet oftherat (aove We have discussed barrierless processes from two per-just discuss ed, significant enhancement of the rate (above spectives. A purely classical diffusive model was used to dis-
that predicted from the Golden -Rule) was observed due to spect pe cail iffu iod s uto dis-cuss some aspects of barrierless reactions involving large
the presence of coherence. We surmise that because the lev- amplitude motion. Secondly, our initial studies of quantum
els in state 1> are essentially resonant with those of state effects in vibronic systems, where the vibrational structure
12>, the relatively slow dephasing time allows the levels to and dynamics are included explicitly, was described. We
remain resonant for a substantial period of time before fluc- plan to extend this latter work in studies of criteria for adi-
tuations destroy- the overlap. It is important to stress thatthe results shown above arise from the presence of manycou-
coule leels ahownd dov notaourin ao oth e d ren e le m pled systems, for example, to investigate the influence of
coupled levels and do not occur in an isolated three level correlation in fluctuations at the two sites.
system. Such a system is shown in Fig. 9 along with the
l/e decay time as a function of J2 For small values of j/r This work, was supported by grants from the NSF. We thank

the rate follows the Golden Rule prediction. At larger values, David Todd for his help with the manuscript.

the rate starts to fall'below the Golden Rule prediction. Of
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Solvent Polarity Dependent Formation Dynamics of TICT States.
I. Differential Solvatokinetics

Wolfgang Rettig

Iwan N.-Stranski-Institut, Technische Universitiit Berlin,
Stral3e des 17. Juni 112, W-1000 Berlin 12, Federal Republic of Germany

ChernicatKifietics / Fluorescence / Photochemistryl Polarity / Viscosity

Comparison-of the fluorescence kinetics of two dialkylaminobenzonitriles with different hindrance to

plaviariy is used to extract information on the polar-solvent induced shape changes of the excited-state
potential surface for TICT formation. The conical intersection between B* and A* states is shown to

move to smaller twist angles as solvent polarity increases.

Introduction died with caution in view of the recent interpretations of

Just as the well-known technique of solvatochromic meas- TICT formation as a barrierless process [12,17,183.

urements is able to yield information on the dipole moment This letter is intended to bring additional light into these

of excited states fromn-the red. or blueshift of absorption questions and reports solvatokinetic measurements on two

and/or fluorescence spectra in solvents of different polarity derivatives of DMABN which differ in initial conditions

[1 - 3], the measurement of the solvent polarity-dependence (twist angle). A large body of evidence is available indicating

of reaction rates,. called solvatokinetics here, can provide that substituted N-phenyl-piperidines are substantially

information on the electronic nature of the transition state twisted in the ground state (A4'os = A4Frc - 300, see scheme

and the dependence of barrier heights and barrier positions 1) whereas N-phenyl-pyrrolidines are close to planar (see

on solvent polarity. This field is relatively new, and only references cited in [19]). The corresponding 4-cyano-com-

scarce data can be found in the literature. Regarding ground pounds, N-(4-cyanophenyl)-piperidine (PIPBN) and -pyr-

state reactions, examples for both retarding [4] and accel- rolidine (PYRBN) also show this feature as evidenced by an

erating [5] influence of increasing solvent polarity have been analysis of their photoelectron spectra [20]. The TICT for-

observed. In excited-state reactions, too, cases of reaction mation rates kBA of these two compounds (see scheme 1)

'rates increasing [6-8] and decreasing [9] with solvent po- differ by a factor of more than 10 in n-butyl chloride, and

larity have recently been found, the faster reaction of PIPBN was interpreted as being the

The four examples cited refer to stilbene and related dyes result of pretwisting in the ground state [20]. Comparison

which undergo trans-cis or cis-trans isomerization in the of the solvatokinetics of these two dyes ("differential solva-

excited and/or ground state. In this case, the qualitatively tokinetics") should thus allow to yield information on where

different solvatokinetic dependences can directly be linked along the ,xcited state reaction potential the activation bar-

to the theoretical model of Biradicaloid Charge Transfer rier is placed and how it moves upon changing the solvent

(BCT) states [10-13], and they result from the crossover polarity.

of a polar and a nonpolar state for the conformation with Scheme I
a 90' twisted stilbenoid double bond, when donor and ac-
ceptor substituents are introduced [9]. /T 77 .~ N R2 n17

The well-known Twisted Intramolecular Charge Transfer +
(TICT) state [12-15] can be viewed as a subclass of BCT

states [10-13] where an essential single bond is twisted, A

and where the electronic structure is that of a radical cation/ As-PF e n gd

radical anion pair. Recent solvatokinetic measurements of
the ps formation rate kBA of the TICT state A* from its excit.. kBA .
precursor state B* for dimethylaminobenzonitrile A (TICT)

(DMABN) in isoviscous mixtures of alkylnitriles and al- kB/ kAB

kanes, and in homologous series of alkylnitriles [8,16] es- \A

tablished that the observed kinetics is accelerated when sol-

vent polarity increases and everything else is kept constant.
This lead to the notion of solvent-polarity dependent acti- -

vation energies, similarly as observed in the stilbene exam- NC -. N

pies [6- 8]. In the case of DMABN, increasing solvent po-

larity lowers the activation energy for TICT formation PYRBN PIPBN

[8.16] although the term "activation energy" should be han- (ATFC : 00) (A(PFCz 30)
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Experimental to include the weightsA associated with ¢r (Eq. 1) into the

The synthesis and purification of PYRBN and PIPBN analysis.

'have been described previously [19]. Solvents used were One of the simplest ways to do this is to use the mean

spectrograde or purified~by repeated fractional chromatog- decay time defined by Eq. 2 which is a measure for the
raphy and, where necessary, subsequent distillation. Flug- time-integrated fluorescence (i.e. proportional to the fluo-

rescence decay kinetics at low temperatures were measured escence quantum yield [21]).
using a time-correlated single photon counting setup and = A1 /Y.f A / Aj . (2)
cooling equipment described in detail elsewhere [21,22].
Synchrotron radiation from BESSY was used as excitation, Results
,source (A = 300 ± 10 nm). The short wavelength fluores-
cence FB was monitored at 350 + 10' nm. and its decay Fig. I shows examples of the FB decays observed in different

an e bsolvents. In all cases the decay of PYRBN (when measured by -) is
analysed by the iterative reconvolution technique [23] with slower than the decay of PIPBN fluorescence. The results of the
a kinetic model according to Eq. 1 (sum of exponentials). fits are presented in Table 1.

This table also contains the decay time 77 measured at 77 K
i = Ajexp(-t/T). (1) where the twisting motion is thought to be frozen. Then, TICT

formation rates kBA can be readily obtained by using Eq. 3. They
are summarized in Table 2, together with the ratio of the rate

In all cases, three exponentials or less were sufficient for an constants for PIPBN and PYRBN as a function of solvent polarity
acceptable fit (X2 Z 1.2). The nonexponential nature of the (measured by Af = ( - 1)/(28 + 1) - (n2 - 1)/(2n2 + 1) [1]).
decays did not change when observed through a polarizer keA (0 -' -1'. (3)
set at the magic angle (54,7). Temperatures were kept far

below T, the equilibration temperature around which the It is evident from Fig. 1 and Table 1 that nonexponential behaviour
excited states equilibrium B* # A* can be established within is mainly observed in the more polar solvents butyronitrile and

the excited states lifetime [14,19,24],-thus all kinetics belong propanol (larger values of A2). But also in medium polar solvents
like n-butyl chloride, a long decay component can be observed,

to the "irreversible kinetic region" represented by simple although of very small weight (A2 < 1%) and negligibly affecting
B* -- A* reaction. This is also evidenced by the fact that the the value of f. The nature of this long decay component is not yet
long-time decay constants of the short (FB) and the long- completely clear but it could be indicative of a residual nonexpo-
wavelength band (FA) are significantly different [25,26]. nentiality. It is not linked to the B* # A* equilibration process and

wAlthgh ^ a e siniatl delyiffeldsraetabl fs,26 is observed-for all the TICT forming compounds investigated so
Although a multiexponential model yields acceptable fits, far [25]. It does not diminish u~pon repeated purification. The pres-

other kinetic models, of a nonexponential nature, have ent results and conclusions, however, are not affected by it in any
equally ben discussed [12,17,25,27,28], especially to de- way.
scribe the kinetics observed in alcohols. In these solvents,'
plots of log I, (t) vs t are curved for FB. A multiexponential Discussion
model (according to Eq. (1)) can faithfully describe this cur- The above results can be understood using the simple
vature even though the (nonexponential) kinetics may have model of a double-well S, -potential with a barrier (or region
nothing to do with several independent species constituting with an approximately flat potential) separating B* and A*
theF-fluorescence. Therefore, the recovered time constants states, as schematically shown in Fig. 2. Due to the steric
rj cannot directly be compared, and due care has to be taken repulsions in PIPBN operative for near-planar conforma-

Table 1
Decay components T,(ns). relative weighty A, (%) and derived mean relaxation times for the decay of FB fluorescence of PYRBN and PIPBN in different
solvents at low temperature

Solvent Temp. Compound TI(A,) T2(A2) T3(A3)

EOE3 1  -1051C PYRBN 2.19 (l.0) - - 2.19
PIPBN 0.32 (0.996) 3.45 (0.004)8) - 0.329)

EOE/Ib) - 1201C PYRBN 2.02(0.92) 4.8 (0.08) - 2.24
PIPBN 0.34(0.99) 2.61 (001) - 0.36

BCIO - 1201C PYRBN 2.96 - - 2.96
PIPBN 0.315 (0.99) 3.9 (0.01) - 0.35

BCN/Id -120 C PYRBN 1.00(0.51) 2.32 (0.49) - 1.65
PIPBN 0.19 (0.85) 0.67 (0.14) 3.1 (0.01) 9) 0.26)

n-propanol -105PC PYRBN 0.91 (0.43) 3.6 (0.57) - 2.46
PIPBN 0.18(0.47) 1.27 (0.35) 2.86 (0.18) 1.05

BCI0 77 K PYRBN'0 5.5 (1.0) - - 5.5
PIPBN O  3.4

diethy ether, ' diethytether, isopentdne (9. 1), n-buti ,.hhrade, , n-butyruntrle, iobutyiontr1l 9.1i," ulenL Adependent, hghtl nunexpundi a th
curvature depending somewhat on solvent, ) equilibration, longest time constant equal to decay time of FA.
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Table 2
TICT formation rate constants-kBA for PIPBN and PYRBN, and their ratio r, For solvent abbreviations, see Table 1. Low-temperature
viscosity yalues I are also given

Solvent Temperature ,/(cP) kBA kBA(PIPBN)/10 7 s-1 (PYPBN)/107 s' r

EOE - 105'C 2.1 283 27 10.5
EOE/l - 1209C .248 26 9.5
BCi - 120'C 280 15 19
BCN/I - 120°C 355 43 8.3
n-propanol - 105 °C 900 66 20 3.3

tions, which ar larger than for PYRBN, an additional steric angle 6 as reaction coordinate but also an additional re-
potential is introduced (for both So and SI), but the rest of active mode of symmetry species B (in the point group C2)
the potential, for larger twist angles, is thought to be roughly of yet unknown nature r38]. The presence of an additional
unaffected. Consequently, PIPBN starts its reactive motion mode follows from considerations of fluorescence polariza-
on the S, surface much closer to the "critical twist angle" tion measurements [29] and state correlations [30]. At the
0, where the-downward slope of the TICT potential starts intersection at 0,, of the zero-order B* and A* states (in-
than PYRBN. dicated by the broken lines), a conical intersection develops

The potential depicted in Fig. 2 with the unbroken line is [30,31), and the system does not have to go over the top
multidimensional in nature, i.e. it involves not only the twist of that barrier but can follow the unbroken potential with

reduced (or altogether absent) activation barrier.

4- |©o b) A

1PCr

tn Fig. 2
Schematic Sr-potentials for PYRBN and PIPBN. PYRBN is as-
sumed to possess a potential minimum at a twist angle 0 = 0
whereas steric repulsion (-- -. ) leads to a twist angle of ' t- 30'
for PIPBN. The zero order potential curves for B* and A* states

- -) cross at the critical twist angle 0, where a conical inter-
ig(cnts) section develops providing a potential (- ) with strongly low-

ered or absent activation energy from B* to A*

4As the TICT (A*) state is considerably more polar than
d the B* state [14,15], an increase of solvent polarity will

3 preferentially lower the A* with respect to the B* state thus
shifting 0,, to lower twist angles (and lowering any activa-

- tion barrier which might be present) as indicated in Fig. 3a).
If the solvent polarity is high such that the initial twist angle

1 of PIPBN (,-,30) exceeds 0,, then the reactive motion starts1 off with a nonzero gradient and corresponds to driven dif-
.... . . . . .. .fusion which is faster than diffusion over a barrier or along

t/ns 0 5 10 a flat potential (applicable to PYRBN for twist angles be-
Fig. I tween 0' and 0,-).
Decay curves of the FB fluorescence in diethylether at - 105"C (a) The diffusion along the flat portion of the potential
PIPBN, b) PYRBN) and in n-butyronitrilelisobutyronitrile (9:1) at (0- <4 <4q ) can be modelled by the "staircase model",
-120-C (c) PIPBN d) PYRBN). The figure also contains the fitted I
curves (unbroken line) and the experimental prompt response func- leading to a stochastic differential equation the solution of
tion. The longest decay components for a) and c) (with very small which has recently been presented [32, 33]. In this model
weight) are attributed to excited state equilibration (Fig. 3b), the reactive system can emit (FB) fluorescence as
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long asit diffuses along the flat portion of the potential. The The kinetic data presented here are not isoviscous. Due
diffusion'starts at x =-x0 ; at x = 0;it is reflected; and at x = a to the lack- of low-temperature viscosity data of most of the
(correspondingto 0,, in out case) the system reacts and thus solvents used only few valuesfor q [34] could be included
instantaneously stops to emit. into Table, 2.

d)} These values make evident, that at temperatures around-
- 105,'C, propanol possesses a considerably higher viscosity

'P/r than the nonhydroxylic solvents used, 'For these low vis-

B* cosity solvents, an overall, acceleration in rate is observed
especially for the strongly polar butyronitrile.

E N A Comparison of the two dyes PYRBN and PIPBN, how-
ever, in a way eliminates the conditions of different viscosity,
and the rate ratio r yields evidence for the change of the

- position of 0.
By application of Eq. (4) to the present problem, Eq. (5)

,__ ,_ _' is derived, where the initial conditions x0 have been set 0'
_0___ 900 and 30' for PYRBN and PIPBN, respectively, and where a

b) has been identified with 0,.

kHA(PIPBN) cc (5)

Sr kBA (PYRBN) - (4,- 30) (q0c + 30) '

*4 From Eq. (5), r is expected to increase and to approach
infinity as 0,, tends towards 30°. In reality, a maximum but

X0 finite value for r may be expected. Eq. (5) is not applicable
to cases with 0, < 30° (more polar solvents), and an ap-

0 X propriato stochastic model would have to include both a
flat and a curved potential region. It can, however, easily be

a) Schematic S, potential for PYRBN (see Fig. 2) under the influence seen that, as 0, decreases below 301, the relaxation of
of varying solvent priarity. For weakly polar solvents (._), K PIPBN starts off with driven diffusion whereas for PYRBN
is situated at lrg,,t twist angles than for strongly polar ones a flat potential region remains which has to be crossed. We

-..., ,), b) Staircase model (- ) for calculating the sur- therefore expect r to decrease flr 0c, decreasing below 30'
vival probability on the flat part of a potential ( - -) similar to and to reach its lowest value f6r 0, approaching 0' (which
that of a). For the significance of a and x. see text is, of course, a somewhat unphysical case). Thus, the ob-

served r-dependence on solvent polarity (Table 2) with its
The time-dependent fluorescence intensity If (t) is propor- maximum reached for n-butyl chloride can be interpreted

tional to the survival probability P (t) on the surface the to signify 0,, - 30' in this solvent, with 0,, > 30 in diethyl-
average decay rate of which is given, under simplifyingas- ether, and 0, < 300 in n-butyronitrile and propanol.
sumptions, by Eq. (4) [33], The very low value of r in propanol is probably related

2kT I to an additional source, namely the competition between
k= (a - x) (a + xo) (4) the reactive motion along 0 (kBA) and that of the more orless concerted solvent relaxation, k,1. In alcohols, k-,01, is

where kT has the usual meaning, is the solvent friction, a espe.-ially slow such that kBA and k,.1, have the same time
the location of the sink or step, and xo the initial condition scale, and a two-dimensional diffusion model should be used
(starting twist angle in our case). in this case. This problem is dealt with in a separate paper

Eq. (4) predicts that, as a (or 0,r) decreases the survival [35] and can account both for the nonexponentialities ob-
time gets shorter, and thus the reaction rate increases (for served (Table 1) and the observation of A*-rise times being
all other conditions being equal). The isoviscous experiments shorter than B*-decay time [12,17,36]. Additionally, H-

by Hicks et al. [8,16] showing a positive solvatokinetic be- bond formation may play a role in alcohols [8,37].

haviour i.e. increased reaction rate with increased solvent Finally, it should be mentioned that nonexponentialities
polarity can thus be interpreted in two ways: i) variation of are inherent in the staircase model [32,33], and that the
the barrier height [8,16] or ii) variation of the barrier po- theoretical long-time decay constant given by Eq. (6) [33]
sition, or of . defining the edge of a flat portion of the does not depend any more on the initial condition x0, (dif-
surface. On the basis of recent discussions of kinetics on ferent to the average decay rate constant, Eq. (4))
barrierless and low-barrier potentials and from the com- 1 t2kT
parison of measured activation energies with those of the kiong = 4 a2  (6)
solvent viscous flow [12,17,18] the second possibility seems
to be more likely although reality may also well correspond but only on a, on temperature and on solvent friction '. The
to a mixture of both cases. long decay components observed in Table 1, with their
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,weight, increasing with solvent polarity, could well be due [18] F. Heisel,.J. A. Mieh6, and J. M. G. Martinho, Chem. Phys.
tothis latter source. 98,,243,(1985).S r[19] W. Rettig, J. Lumin. 26, 21 (1981).
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Recently we applied, for the first time, the general theory of dilation analyticity (or: Complex Scaling
Method, CSM) to quantum statistics of nonequilibrium. A novel kind of (universal) coherence was revealed
from first quantum theoretical principles. The corresponding irreducible structures we called coherent-
dissipative structures, since they represent a short-lived and spatially restricted cooperative phenomenon.
The crucial points of the theory are stressed. Similarities as well as differences with (i) the BCS-states of
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superconductivity, (ii) the dissipative structures of the Brussels school, and (iii) Yang's concept of ODLRO
are mentioned. Very recently the general theory was applied to different dynamical processes in amorphous
condensed matter, and specific and quantitative predictions were made. In connection with current work,
we discuss here in some detail two new predicted effects concerning protonic delocalization in water (and
other materials) and proper experiments to test them. These effects are: (1) a novel relation between proton -
transfer rates and proton mobility in water; (2) an anomalous decrease of proton mobility in H20/D20
mixtures. Both effects are shown to contradict the predictions of all thus far existing theories or models.

Current experimental results verify undoubtedly our theoretical predictions.

1. Introduction Thus far the existing theoretical and experimental results
Recently we studied the possibilities for an extension of strongly indicate that quantum correlations (as revealed by

the theory of dilation analytic operators of quantum me- our general CSM-theory) play a fundamental role in the
chanics [1,2] (also called Complex Scaling Method, CSM) dynamics of condensed matter and - this being a crucial
into the Liouville (or: superoperator) level [4,3]. Thestart- point - they can explicitly be associated with concrete ex-
ing point of this work was the conjecture that an intrinsic perimental results.
physical connection between the CSM and the conceptual In Section 2 a short outline of the general theory is given.
basis of Prigogine's novel theory of microscopic irreversi- Section 3 contains the application of the theory to the phys-
bility [5-11] may exist. Our corresponding theoretical in- ical context of proton transfer reactions and proton mobility
vestigations, which are based on in water, a predicted novel relation between these quantities

(i) the CSM of ordinary quantum mechanics and [20] and certain very recent experimental results [26]. Sec-
tion 4 presents the predicted "anomalous" decrease of pro-(ii) Co man's density matrix theory for fermionie systems tonic conductance in H20/D20 mixtures [20] and the ex-[12,131, p rm na ofr ai no hsefc 2]

led us to the first "extension" of the CSM into the canonical perimental confirmation of this effect [22].
ensemble formalsmn of quantum statistics [4]. 2. A Short Outline of the CSM-Theory of Coherent-
An unexpected theoretical result is that the fermionic sec- Dissipative Structures
ond-order density matrix I"12, after proper CSM-transfor-
mation and "thermalization", may contain submatrices , Trying to make the paper as self-contained as possible, a
that have no diagonal representation. short outline of our general CSM-theory of thermally acti-

The physical meaning of this surprising finding is that the vated (or: supported) quantum correlations in condensed
quantities y, which are associated with quantum correla- matter is given in this section. For the full proofs, see
tions, represent a new kind of "undivisible units" (or: struc- Ref. [4].
tures), due to the fact that the well-known probabilistic in- (A) We start with the presentation of the crucial formal-
terpretation for the diagonal elements yl (i = 1, ... s) of y mathematical ingredients of the theory and its main result.
is now impossible. There is an algebraic corollary due to Reid and Briindas

These units we called coherent-dissipative structures, be- (for the proof, see [27]) which states the following:
cause they are short-lived, short-ranged, and exhibit a finite The s x s Jordan block C(0) represented by the matrix
minimal dimension Smjn in the space of state functions (i.e.,
the corresponding Hilbert space after the application of 0 1 0 ....0
CSM); additionally, and most surprisingly, increasing tem- ( " '
perature seems to support their extension. These structures Cs(0) . 0 (1)
represent a new cooperative (or synergetic) phenomenon
that may be of significance for dynamical processes in con. 0
densed matter. As their existence follows "from first prin-
ciples" of quantum theory, we also studied [4] their con- is similar to the s x s matrix q with matrix elements
nection with (and difference to) (i) the "standard" coherent
states of quantum theory (like the BCS states of supercon-
ductivity [14]), (ii) Prigogine's dissipative structures of phe- q= (6,- expi, (2)
nomenological irreversible thermodynamics [15,16], and
(iii) Yang's concept of off-diagonal long-range order (OLD-
RO) [17]. where

Very recently we succeeded with the application of the
above general CSM-theory of quantum correlations to dif- I :g k,I < s. (3)
ferent and concrete dynamical processes in condensed amor-
phous matter [18-25]. The predictive power of our theory From this corrolary it follow\s that there does not exist any
was recently demonstrated by its different experimental ap- similarity transformation (unitary or not) w hich can diag-
plications [18,19, 22-26], and its quantitative predictions onalize q.
[20] concerning certain new experiments [22,26], which tB) The proper theoreti.al entity for the description of the
have been motivated by the theory, cf. Sections 3 and 4. quantum entanglement between phyikal states in the level
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of "two-particle-" (better: two-states-) correlations is the sec- The "coherent" part Fe', which is representable by a wave
ond order reduced density operator (or: matrix) F(2). For function, is intrinsically connected with the BCS-function of
fermionic systems, many fundamental results concerningTF(2) superconductivity; see below. Our theoretical work showed
have been achieved,, a considerable part of them being however that - for the description of thermally activated
,proved byColeman [12,13]. quantum correlations - the relevant part of the density

Coleman considered the F(2) defined with respect to the operator F 2J is the small box part F ), Eq. (9), where the
AGP function 1g(NI2)>, where N/2 is the number of "paired constant A) depends on the (finite) number of particles N
fermions". This function is constructed with the aid, of the and the aopompanying (finite number of) fermionic degrees
geminal of freedom s,

= kEI g'> (4) A?) N(N- 2) (11)
4s(s-1)

of rank s, with s > N12, where Ik> and k+s> are "one-
particle" functions, and the AGP ("antisymmetrized geminal where s > N. (Full details are given in [12,13] and also in
power"), which is defined by [4]).

(C) In order to apply the above density matrix formalism
1gN1> = Av {g(1,2)g(3,4) ... g(N- 1, N)}, (5) *o a physical microdynamical process exhibiting irreversi-

bility, the focus is on the resonance picture of unstable states
Al being the conventional antisymmetrization operator. In [4]. Here enters the CSM into the formalism. The "part of
the specially important case where the eigenvalues of the the ensemble"-correlations represented by the quantum cor-
corresponding first order reduced matrix r1 (g) are all related density operator (9) is then subjected to the "ther-
equal, the AGP function is called extreme. In this case, all malization transformation"
the wave amplitutes gi in,(4) are equal.

It was proved by Coleman that F((n1) cxhibits a simple I O l,
"box and tail" matrix form, if it is represented in the basis YE -y e I2 F I e 7H', (12)

{{Ii,i+s>,1 < i 5 s}, {i~j>,J # i+s, 1 < i,j < 2s}}. (6) with the standard abbreviation fl = 1/kBT. This transfor-
mation makes the connection with the canonical ensemble

In the following we consider extreme AGP's exclusively. In formalism of statistical mechanics. The notation ( ...)Y ikfers
this case igt is an eigenfunction of the matrix F(2)(gNI2) to complex scaled quantities. Here, e.g., H' represents the
corresponding to the large eigenvalue ).S of the matrix appropriate complex scaled second order reduced Hamil-
F(")( NI2). The remaining eigenvalues are equal and consitute tonian, and Z is the appropriate normalization factor.
a (2s + 1) (s- 1) degenerate eigenvalue prF), which is very Further straightforward derivations within our general
small, if 2s/N > 1. The matrix r(1)(gN12) can therefore be CSM-theory showed that, in the important special case

decomposed as follows: where all the paired states I(k,k + s)y> have the same (real)

F(2) r 2 )(gn 2) energy, i.e.

= r, + ry, (7) Ek = E, (k = 1,2, ... s), (13)

= (F + r + F.li,, the considered density operator, Eq. (12), takes the form

where the "large box part" is given by y - E u k,t I(k,k+s)><(I,l+s)c*[ (14)

re = Ig>).?)<ol, (8)
with

with 1E AV)( l e+' (15)

1 --- Ik k+se, k + s>, s

Here, the familiar Boltzmann factor, exp(-i#E), appears ex-
the "small box part" is defined by plicitly. Parenthetically, the general CSM formalism asso-

ciates with the "widths" ek the "lifetimes" Tk in the standard
FY)= ).)'lk,3k+s - )l1,1+ s>, (9) way, i.e.

kJ = h 
(16)

and the completely uncorrelated "tail part" is given by 2

m-, = n) Z kJ>(k, k . (10) The following crucial point should now be observed. The
k<1) matrix elements 141, Eq. (15), of the operator 1 become pro-

k+S0I
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portionaltoihe matrixelements of the matrix q, Eq. (2), if the appearance of Jordan blocks in the CSM-transformed
the restrictive quantization conditions density matrix y, and(ii) the finite lifetime r¢ of these struc-

tures.
k- I The physical context of the above formalism as well as
- = - k, (k 1, 2, ... s), (17) the physical meaning of different restrictive conditions ap-Ss 2kaT

pearing therein have been discussed in detail [4,21]. Here
are fulfilled. In this specific case the equality let us mention three important points which are related to

the fundamentals of our general CSM-theory of quantum
.k,-
- " e- 1"A?)qk -const, correlations in condensed~matter.
zl (18) (i) It has been proved by Blatt [28] and repeatedly pointed

out by Coleman [12,13] that the BCS ground state ansatz
holds true. is "equivalent" to an AGP ansatz, Eq. (5). More specifically,

In more physical terms, if the "widths" ek and the energies the superconducting state is here represented by the large
Ek of the complex scaled pairs I (k, k + s)> fulfill the condi- box part a ), Eq. (8), which is representable by a wave func-
tions (13) and (17), then the matrix elements, Eq. (15), of the tion. Also it should be pointed out that the coherent-dissi-
density operator y constitute a Jordan block similar to C,(0), pative structures always have finite lifetime and extension
Eq. (1). This is a very important result, because it means (in Hilbert space). In contrast to this, a superconducting
that in this case the operator y has no diagonal represen- state has'an infinite lifetime and may contain all particles of

-tation. Furthermore this implies that all the "paired" states the system (at T = OK).
constituting ycoalesce and act "cooperatively" as an undi- (ii) The following similarity exists between the coherent-
visible unit, Thus the well-known probabilistic interpreta- dissipative structures and the well known dissipative struc-
tion of the diagonal elements ykk is completely lost here. tures [15,16] of Prigogine and coworkers: Both cannot have

It should be pointed out that this surprising finding is a "size" smaller than a critical one; and both cannot exist,
intrinsically connected with the application of the CSMinto if they are not in contact with the environment.On the other
the formalism, since the proved Jordan block structure of y hand, it should be stressed that the dissipative structures are
is necessarily connected with the complex factors concepts, of phenomenological thermodynamics, whereas

the coherent-dissipative structures are concepts of micro-
ei(c, 4+) scopic theory. These remarks support the following specu-

lation: The formalism of coherent-dissipative structures may
appearing in (15). The density operator , Eq. (14), gives the represent the framework in which the phenomenological dis-

mathematical. representation of the coherent-dissipative sipative structures could be established "from first princi-

structures, i.e., the synergetic phenomenon of interest, pies".
-D) From the quantization conditions (17) and further (iii) It has been pointed out [4] that the aforementioned

reasoning, we finally derived the result that the extreme condition on the AGP is a necessary condition forphysical rthe appearance of Yang's concept of off-diagonal long-range
minimal "dimension" smi, of y is given by order (ODLRO) [17]. As shown above, the appearance of

4nkgT coherent-dissipative structures is intrinsically connected
Smin = h t. (19) with the existence of off-diagonal terms in the thermalized

and complex dilated F ).Therefore, and in order to prevent
Tj represents the relaxation time (or lifetime) characterizing possible confusion and misunderstanding, it should be
the specific microdynamical process of a microsystem. Thus stressed that coherent-dissipative structures are intimately
Sm n determines the minimal "size" (in the space of CSM- (although not in the "BCS sense") connected with Yang's
transformed state functions) that the Jordan block at least ODLRO, the connection being even strengthend by the fact
must have, and at the-same time it defines the new "unit", that the corresponding density operator y has no diagonal
i.e. a coherent-dissapative structure. As smn is direct pro- representation. In this context, one should also observe that
portional to T, one may conclude that the thermal motion no intuitively appealing explanation (i.e., an explanation in
supports the extension of these structures. classical mechanical terms) of the emergence of coherent-

In this context it is also interesting to observed that the dissipative structures is possible. Namely, as Yang points
trace of y repeesenting coherent-dissipative structures van- out: "Since off-diagonal elements [of the density matrix]
ishes identically, as e.g. one immediately sees from Eq. (1). have no classical analog, the off-diagonal long-range order
Our current investigations indicate that this result may be ... is a quantum phenomenon not describable in classical
of considerable importance in the physical context of laser mechanical terms" [17].
light scattering on water, because it can be connected - (F) The different applications [1 8- 25] of the above gen-
under specific conditions - with an additional light scat- eral CSM-theory make use of the following ansatz [21] con-
tering component from "strongly" H-bonded regimes; cf. cerning the actual delocalization (in coordinate space) of
[20,21]. coherent-dissipative structures:

(E) The above structures we have called coherent-dissi-
pative due to (i) the new kind of coherence associated with Ex = Fx(f/.a ...) WVx -s.,x (20)
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The symbols'have the following meanings: HE may represent haustive analysis [32] led to the surprising conclusion that
- depending on the specific application - (i) a transport the physical object usually defined to be the H+ (or H30 )

coefficient, or (ii) the geometrical size of a coherent-dissi- cannot be considered - thus far - to represent a particle
pative structure; X the specific microscopic quantum system; in the conventional sense. This finding led Hertz to the con-
Sni,,x the "size" (in the space of state functions) of the struc- clusion: "... what we call H' ion in aqueous solutions is
,ture as given by the main formula (19); WB the conventional really a dynamical property of the solution" [32]. At this
thermal de Broglie wavelength of one quantum system X; stage, it is important to point gut that the analysis of ref-
and, finally, Fx(/cn, ...) a functiohal of the "effectivq" or erence [32] is carried out entirely within classical mechanics.
"relevant" Hamiltonian HR& being proper to the dynamics In this framework, of course, there are no delocalization
of.X in the condensed system. F may depend on some ex- effects like those being typical for quantum mechanical proc-
ternal parameters, too. esses, and therefore the aforementioned conclusion is clearly

One should observe that the specific "mechanism", Hcn, remarkable.
being responsible for the microdynamics of the system ap- Motivated by the above remarks, it appeared worthwhile
pears explicitly in this ansatz. However, its actual form is to investigate some of the main aspects of the microdyn-
often not needed, as the different successful applications amical behaviour of the system "H+/water ' , in the light of
[18-25] demonstrate. our general CSM-theory of quantum correlations [18]. An

important point of these investigations may be illustrated
3. Coherent-Dissipative Structuresand Proton Transfer in by the following. From the quantum mechanical viewpoint

Water it appears that the H-constituents forming the H+ ions are

One of the oldest and most fundamental problems in the indistinguishable from those belonging to the water mole-

physical chemistry of water is the evaluation of the rate cules and being in the vicinity of the ions. This "unconven-

constants characterizing the following processes [29]: tional" consideration may be motivated by the fact that the
thermal de Broglie wavelength of a "quasi-free" proton,

k1•F Wf, is about I A at room temperature (cf. [21,29]). This
H30 + H20 H20 + H3O+  (21 a) is large enough to find (in most cases) water protons in a

k Eldistance of the order of Wl'+ around each H . This fact
OH- + H20 & HzO + OH-. (21 b) may - even in the present case - lead to the typical de-

localization and/or interference effects being characteristic
These processes play an important role in many biological for the quantum theory. The assumption of quantum effects
processes, too. With the pioneering work of Meiboom [30] between protons "belonging" to ions and water molecules,
it has been proved that one can measure these reaction rates, of course, represents a hypothesis. Nevertheless it appears
ki, and activation energies, E,, (with i = 1,2) by NMR spec- that two important predictions, which follow straightfor-
troscopic methods; see below. The study of proton transfer wardly from this assumption, are in, contradiction to all
reactions in water is also of importance to the understanding known conventional theories (or models); see the present
of the excess (or: anomalous) conductivities (or: mobilities) and the next section. Fortunately, these predictions are ca-
of the hydronium (H30) and hydroxyl ions in water and pable of experimental testing, so that the question concern-
aqueous solutions. Furthermore, in aqueous solutions of ac- ing the validity and/or physical significance of the assumed
ids and bases, fast proton transfer in the water is often con- protonic delocalization can be decided and/or clarified.
sidered to be involved as part of the actual reaction scheme; The first of these two predictions is given by a novel form
see theclassic work of Eigen [31]. [18,20,21] of the connection of

Recently Hertz [32] presented a detailed analysis of a (i) the proton transfer rates, k, of Eqs. (21 a, b)
series of different experimental methods (NMR, X-ray and
neutron scattering, etc.) used to detect the H I (or the H30

+ ) with
ion in aqueous solutions directly. This analysis, together (ii) the excess ionic conductivities of H+ and H-, 2er and
with an extensive discussion of some corresponding exper- - in water.
imental results, revealed that, thus far, none of the consid- The latter quantities -re conventionally defined as
ered experimental investigations was able to detect directly
the so-called H particle (or the H30) in aqueous solutions 21 = ).I, - 2x- , (22)
[32].

In all the traditional (and well-established) theories of the with X+ = K+ or Na + , and
ionic solutions, however, the entity H' is postulated to exist
- at least for sufficient short times - and to correspond .ol- = )oil- - 2 C-, (23)
to some fast "moving" (or "jumping", or "tunnelling") par-
ticle (a proton). In this context let us just mention the %vell- %vhere ;.x represents the experimentally measured ionic con-
known Grotthus mechanism, a traditional model that is be- ductance of the ion X in water [34].
lieved to explain classically the high excess conductivity of The conventional treatment of the connection under con-
H+ (and OH-) in aqueous solutions; see Ref. [33] for a sideration (see e.g. Refs. [30,35] for a derivation) is based
detailed discussion. Nevertheless, the aforementioned ex- on the N'ell established equations of Nernst
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eqD, We proceed now to the-presefitation of the predictions of
W kB (24) the CSM-theory [18,20]. Starting with the application of

the general ansatz (20) to the transport coefficients 2'H+ and
and- Einstein 21t-, i,e.

(x2Y> (25) Ax = Fx (/t&, T). WxdB. Si-jj, (X = H +, OH-), (33)

and formula (19), one immediately obtains
The notations are as follows: q is the elementary charge, D
the diffusion coefficient describing charge transport due to 41. F + WHB- Cr.I.H (34)
proton transfers, T,,, the average lifetime of a H3O+ (or 2O;- F- WodB- Tm).oi-

OH-) ion, and, <x2> the average of the square of the charge
displacement accompanying a proton transfer. In a simple Further insertion of the explicit form of the thermal de Brog-
model, one may identify (x>, with the mean distance between lie wavelength
two oxygen atoms of water molecules [30].

From these equations and the standard relation [30] for
the "relaxation times" associated with the reaction (21 a), WdxB = h m(35)

= - [H 20], (26)
Trc.H+ and the standard relation (26) in Eq. (34) yields the result

one obtains

A + .!L Fli+ OH- k2  (36)211+ = C ks,(27) Coa' =  Oil- "k'-H+ "

where C is a temperature independent constant. Acorre-
sponding equation holds true with respect to OH-, and This formula is the main result of the CSM-Theory. To make

finally, one obtains it capable of experimental testing, we considered [18,20] the
following slight simplification: In the present context we

4H k( may assume on physical grounds that

H- k2 '(28) F, = Foi-, (37)

which represents the desired connection. A useful reformu- because, in both cases (21 a,b), the larger par a the system
lation of this result is given by using the standard Arrhenius- w ith a s s of ater martcuies, ieotetype ansatz for the rate constants of Eqs. (21 a, b), with Hamiltonian H1,f consists of water molecuies, i.e. of the

same compound. It should be pointed out that Eq. (37) rep-
ki = Ci e- 't7r (i = -1,2), (29) resents a physical assumption, which is based on reasonable

considerations concerning the extension and the dynamics

in which case it follows immediately of quantum correlations around each "relaxing center" (clas-
sically described by Eqs. (21 a, b)), and thus it is probably of

A. C2h E,- E2 approximative character. Nevertheless its validity and/or
log- R (30) physical significance is supported by the experiment; see Eq.

- T (37a) below.
Thus, with the assumption (37) we obtain

It will be show that the result (28), or equivalently (30), is

definitely in disagreement with the corresponding prediction
of our CSM-theory of quantum correlations. k2 (38)

The aforementioned precise data of Ref. [34] for the ionic )c"-  1f11 + Ic1  (38)
conductances in water yield the classically predicted value

k, As in the above classical treatment, one can make use of the
T 2.35 at T = 25°C, (31) Arrhenius form of the reaction rates k,, Eq. (29), converting
k2  Eq. (38) to the form

which follows from Eq. (28), and l E-E 2

El - E2  -2.0 kJ/mol for T = 15' ... 55'C, (32) l o - (39)

which follows from Eq. (30), for the considered difference of With the aid of the aforementioned precise data of Ref. [34]
the activation energies; cf. [35]. for the ionic conductivities, we predicted [20] the values
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c1 55 45 35 25 1815 TI0 C
;§ 1.75 at T 25?C (40)

andI X= Na I

09- conventionat
f ; 5+ 2.1kJ/mol for X +  KNa (41) theory

1.t+9 kJ/mol foi.X1 =,Na"

in theaforemefitioned t'ii iperature 'range T = 150... 55C. 0.

It is important to- observe that the result of the CSM-
theory, Eqs. (38,39), is fundamentally different from the re- 0,7.
sult of the conventional theory, Eqs. (28,30). E.g,, ZH+ is
proportional to kit in-the "classicAl" case, cf. Eq. (28), whereas
quite the opposite is predicted in the "quantal" case, cf. 0.6-K
Eq. (38). As a consequence, the classically predicted numer-
ical value of F - -E2, Eq. (32), differs even by sign (!) from CS1
the CSM-predicted value of this quantity, Eq. (41).. X 1 theoryThus far the existing experimental data for the-difference

- E2 exhibit a considerable scattering: -8.8 ki/mol in
Ref. -[36];: -0.4 kJ/mol in Ref.,[37]; + 1.25 kJ/mol in Ref. 0.4.
[35]. .xpi-

To test the above theoretical predictions, new high pre- ment

cision experiments (utilizing the IH-NMR spin-echo tech- 0.3 ,
nique) for the correct measurement of the difference E; - f . 3.0 31 3.2 3.3 3.4 3.5 1000KIT
have been carried -out in the-laboratory of H. G. Hertz(Karlsruhe). The NMR-experimental data [26] are graphi- Fig. l

Graphical representation of the quantity log kl/k 2.as a function ofcally presented in Fig. 1, together with the classical and the inverse temperature. Shown are (i) the predictions of conven-
CSM-theoretical predictions based on the same high pre- tional theory and CSM-theory, and (ii) the experimentally (NMR)
cision conductivity data [34]. In our treatment of these data, determined values of Ref. [26] for the temperature range T =
we prefer 'to omit the experimental values of ki and k2 at 10.70... 58.80C. The data points for the two theoretical predictions

were calculated with the aid of the high-precision conductivity data5.3C, since - to our knowledge - no experimental of Ref. [34] and Eqs. (28) and (38). The reference cation (K+ and
value of A0o1- around 5C exists in the literature, and due Na +) used by the calculation of the H+-excess conductivity,
to the well-known "anomaly" that water exhibits at 40C. Eq. (22), is shown on the graphs
For the temperature range T = 10.7'... 58.80C we obtain
the experin.ietal value As mentioned in Sec. 2, the general theory of coherent-

dissipative structures applies directly to fermionie systems.
E, - E2 = + (1.9 + 0.5) kJ/mol (42) Current investigations being in progress now, however, seem

to indicate that the theory could be extended, under specific
Including the data point at T = 5.3c one obtains conditions, to the case of bosonic systes, too. Thus it would

- E2 e + 1.3 kJi mol [26]. In any case, however, the be very interesting to have knowledge of the experimental
above experimental result confirm the positive sign of values of the two corresponding activation energies (in anal-

E, - k, definitely, thus being in clear disagreement with the

prediction of the classical theory. ogy to Eqs. (21 a, b)) characterizing D + transfer in D20. This

In this context, it is interesting to point out that the well- knowledge would also greatly support the further develop-

known "traditional" treatment of the reactions (21 a, b) by ment of the present theory.

Gierer and Wirtz [38] predicts - in accordance with the
aforementioned classical treatment - a negative sign, for 4. Further Evidence for Proton Delocalization: Anomalous
E, - E2; cf. also [29]. Decrease of H + Mobility in H20/D 20 Mixtures

The above results allow us also to test the relation (37), The above experimental findings clearly support the
which was justified by physical considerations and was as- aforementioned assumption of "proton delocalization" in
sumed to be approximately valid. From the data of Fig. 1 water. Further investigations based on this physical idea
one obtains the relation. permitted one of us to derive a new prediction [20] and to

; 3nceive a corresponding experiment for its testing. That
F,+ ; 1.16 . F0 11-. (37a) work predicted an "anomalous" decrease of the H' (and

probably also DI) conductance, in H20/D 20 mixtures.
The physical interpretation of this interesting finding is sub The physical considerations leading to this prediction are
ject to current investigations, in connection with our very as follows. As already mentioned abo%e, quantum correla-
recent work [23-25] (which concerns the determination of tions between "protons" in aqueous H ' solutions may be
the "effective mass" of a coherent-dissipatixe structure). expected exen within con'entional quantum theory, Niz. due
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to the large thermal, de Broglie wavelength of a quasi-free
H-+that is about-lA at-roomtemperature. In more modern
physical ternms, one can then say that the underlying phyical 00

idea is that H + is delocalized and correlated througlEin- 400-. "A'°
HOI

-stein-Pddolsky-Rosen (EPR) correlations [39-41] with wa-
ter protons of its surroundings "belonging" toH 20 or HDO
molecules. Thisphysical.picture is obviously in clear con-
trast to the'viewpoint taken by quantum chemistry and mo- 300-
lecular dynamics, where protons are considered as classical ";
particles being subject to the Born-Oppenheimer approxi- 0E - K0L

mation. % "
The following point is now crucial. If the well-known high- o.

H conductance, 2H+, in liquid water is caused by the as- 200.
sumed quantum interference effects, then there must be an
anomalous decrease of 'AH+ in H20/D 20 mixtures due to
the so-called mass and spin superselection rules (cf. [40]). -- .... -

In these mixtures, viz., the possible quantum interference
between appiopriate protonic states becomes disrupted by 100 KCI

deuterons ('belonging" to D20, HDO, or D + ions and) be-
ing "near" or "between" the considered protons. For exactly
the same reasons we also might expect an anomalous de-
crease of- the D* conductance in H20/D 20; cf., however,
the corresponding remarks at the end of the previous sec- 0
tion. 0 0.25 0.50 0.75 1

(A crude estimate of the decrease of AH+ in a equimolar
H20/D 20 mixture may be based on the model that coher- Fig. 2
ent-dissipative structures, in water, extend over the partial Molar conductances of HCI/DCI, A'Ucvp, and of KCI, Aa, in

H20/D20 mixtures at infinite dilution and T = 251C as a function
volumina being "occupied" by protons or deuterons (and of the mole fraction XD of deuterium. Also shown is the "excess
not by oxygen atoms). A rough calculation in these lines conductance", determined from the difference between the data for
shows that the considered decrease would then be of the HCi/DCI and KCI. Solid and brocken lines are guides to the eye,
order of 10%; cf. [20,21]. Error bars are smaller than the size of each data point. (Reproduced

In order to test this prediction experimentally, molar con- from Nature, Ref. [22])

ductances, A, of different HCI/DCI and KCI solutions in
H20/D20 mixtures were measured [22]. The experimental conductance of a mixture, of concentration C, A(XD, C),
results are summarized in Figs. 2 and 3. from that determined by linear interpolation between the

Firstly, let us consider the conductivity of KCI solutions. values of the two pure solutions (XD = 0 and 1), A i,(XD,
The conductances of KCI solutions in H20/D20 mixtures C), as
are found to depend almost linearly on the D-atom fraction,
XD, of the solvent, cf. Fig. 2. This "linearity" appears to be AA(XD, C) A(XD, C) - Ali(D, C)
independent of the concentration of the measured solutions
(C = 0.01 ... 0.1 mol/l); see [22] for details. This result is as
expected from standard (or: classical) electrochemical the- (43)

ory, cf. e.g. [34], because and the corresponding relative deviation in per cent by
(i) it is experimentally well established [42] that the fluidity
(i.e., the inverse of viscosity) of the considered mixtures de- Ae1 (XD, C) - 100 - AA(xD, C)/Ai.(XD, C). (44)
pends almost linearly on XD and
(ii) ionic conductances are, to a very good approximation, The relative deviation at the equimolar solvent composition
direct proportional to the fluidity of the solvent (Walden's is XAre(0.5, C --) 0) ; - 5.1%.
rule). Furthermore, and as already stated in the previous sec-

Secondly, let us consider the conductivity data for HCI/ tion, the quantum effects of interest are expected to be re-
DCI in the considered H20/D 20-mixtures. Figure 2 shows flected by the excess conductance, which is defined by the
the resulting conductances at infinite dilution, A', plotted difference of the data obtained for HCI/DCI and KCI. (This
against the mole fraction XD. It is seen that at intermediate definition is based on the fact that the main thermodynamic
solvent compositions the curve lies distinctly below the data of these two solutions are very similar [34]). The cor-
straight line connecting the limiting values in pure H20, responding "anomalous decrease" of the excess conductance
where XD = 0, and D20, where XD = 1. at XD = 0.5 is now -7.7%, cf. Fig. 2.

To be able to formulate the experimental results in more For illustration, the following point ma) also be observed.
quantitaLive terms, we define the deviation of the measured The aforementioned "disrupted quantum interference" is
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matter [4] is based on the first principles ofquantum theory.
Thus the cooperative phenomenonlbeing described by co-

460, herent-dissipative structures appears to represeit a new
form of "selforganization" of matter inthe microscopic level
of physical. description.

Recent applications of thegeneral theory to thus far five
different physical'contexts (i.e., the two applications consid-

. I 0 ered above [18,20,22],ionic conductivity of molten alkali'
aJ50 . chlorides ,[19], spin waves in .magnetic systems, above T.

C4[3,24],,and quantum correlation effects in high-T super-
conductors [25]) demonstrated the predictive power of the

ci theory and the - more or less. - universal character of
C quantum correlations in condensed matter. In this paper,

(Mot 1'1) we discussed two surprising predictions of the CSM-theory
300 concerning proton mobility and proton transfer~reactions in

0.05 water, and also the results of two very recent experiments,0.10
0.0 which clearly verified these predictions [22,26].2O0 -0,20 The above theoretical investigations and experimental
0 .51findings indicate that coherent-dissipative structures may

r play an important role in the dynamics of H "-transport and
0 0,25 0.5 0.5 1.0 H-bond formation (cf.[43, 44]) in further physical, chemical

and'biological systems.Further work is in progress,,Fig, 3
Graphical representation of the experimentally determined molar We thank H, G, Hertz and H. Weingiirtner (Karlsruhe) for fruitful
conductances of HCI/DCI in H20/DiO mixtures at 250C as a func- cooperation and many insightful discussions. H, G. Hertz and R,
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Rate Processes in Proteins
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Flash photolysis experiments on carbonmonoxymyoglobin over wide ranges in time and temperature
provide information about the rate processes involved in the rebinding reaction. The non-exponential
rebinding at low temperatures shows that the myoglobin molecules are frozen into a large number of
conformational substates with different enthalpic barriers. Above 160 K we observe a relaxation process
that shifts the peak of the barrier distribution from -. 10 kJ/mol to -, 21 kJ/mol. This process is non-
exponential in time and does not obey the Arrhenius law. Above 220 K equilibrium fluctuations between
the conformational substates lead to an averaging of the binding rate distribution and to the opening of

pathways for the ligands to escape from the protein molecules.

1. Proteins as Laboratories for Rate Processes in proteins display characteristic similarities to those in

Proteins form excellent laboratories for the study of rate glasses [15]. Since the corresponding theory is still in a state
processes. Nearly every aspect of rate theories is important of flux, detailed studies of the dynamics of protein reactions
for the elucidation and explanation of the function of pro- may add to an understanding of rate processes in all com-
teins. In turn such investigations may shed light on rate plex systems.
theories. A partial list of keywords includes: Kramers theory Our approach to studying rate processes in proteins is
[1,2,3], Landau-Zener-Stiickelberg theory [4,5,6], tunnel straightforward: We select a "simple" protein, explore a
effect [7,8,9], stochastic approach [10, 11], non-exponential "simple" reaction experimentally in great detail, and con-
processes and distributed barriers [12], gating [2,13], and struct the simplest model that fits the data. The binding of
pressure effects [14]. In the present contribution wve select a small ligand like CO or 02 to the dioxygen-storage protein
some other aspect, namely the relaxation and fluctuation myoglobin (Mb) satisfies our selection criteria. The first step
processes in proteins. These processes are crucial for the in the exploration of the dynamics of such an apparently
function of proteins, but they are also of considerable in- simple process is the construction of the reaction energy
terest to the study of rate theories. The relaxation processes landscape, the second the examination of the conforma
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tional energy. landscape. Finally, the two,-landscapes are
joined-o des cri6 the reactionin'terms of:the dynamic fea-
tures of the protein.

2. The Reaction.Energy Landlcape
Myoglobin is a small globular protein with a size of A

45x 35 x25 A3 and amolecular weight- of 17,800 daltons. /E -)

Itconsists of a polypeptide chain of,153 amino acids en- S
closing the disk-shaped fijiegroup. The CO molecule binds
to the central heme iron in the reaction

(a)
Mb + CO - MbCO. (1)

While:th'is reaction was first described as a simple one-step kBs
process [16], a long series of experiments has revealed an
increasingly complex picture [12,17,18]. The most detailed H
information about ligand binding has been obtained from HkBA HS
flash photolysis experiments performed over a wide tem- f__S
perAture range. Fig. 1 shows the flash photolysis kinetics of
MbCO between 60 and 300 K. These data can be explained
with the reaction landscape for the binding of CO to my-
oglobin as shown in Fig. 2b. The effective enthalpy isplotted
as a function of the reaction coordinate. Two barriers are
-involved in the binding process. The inner barrier is asso-ciated with the final binding step close to the iron, the outer A( b):

one with the gate between the heme pocket and the solvent. rc
The system Mb + CO is initially in state A, where the ligand reaction coordinate
is bound to the heme iron. A short laser pulse cleaves the
bond and the system moves to state B where the ligand is Fig. 2
in the heme pocket. Below 200K, the ligandcannot escape (a) Schematic cross-section through a myoglobin molecule showing

a hypothetical ligand pathway.
t'rom the pocket because the barrier between B and S is too (b) The effective enthalpy H of the system Mb + CO is given as a

function of the reaction coordinate rc

high. Therefore,, :,rebinds internally(Process 1,B--+ A). The
internal process should be exponential for a well-defined

S....barrier heigth HB^. The observed non-exponential behavior

-2 _is explained with an inhomogeneous population of myoglo-
bin molecules that possess different activation enthalpies

0 3 HBA and consequently rebind ligands with different rates.The

(a) 0 rebinding is described by

-4 0 00 L.NQ
0. = oS dHBA g(HBA) e - 4("tIT)I. (2)

260K N (t) is the fraction of molecules that have not yet rebound
0 , 2a ligand at time t after the photolyzing flash. g (HBA) is the
s -2 200K "probability density of finding an Mb molecule with enthalpic

S220K barrier HBA in the ensemble. For MbCO g(HBA) has a max-
o - imum at about 10 ki/mol. The rate coefficient k(HBA, T)

(b) Hi gh CI 0 "above about 60 K is given by the transition-state expression
- - 4 -2 0 219]

log (t/s) k (HBA, T) = ABA (T/To) e - IlkRT (3)
Fig. 1
Flash photolysis kinetics of MbCO in 75% (v/v) glycerol/phosphate At lower temperatures, the rate k (HBA, T) is influenced by
buffer (pH 7). The absorbance change AA at 440 nm is given as a quantum-mechanical tunneling effects [8].
function of log t. The sample was prepared with a partial pressure
of CO of 0.05 atm (except for the trace denoted by "High [CO]", A second, slower process is observed in the flash photo-
where it was I atm) lysis kinetics above 200 K. This process is exponential and
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dependent on'the CO concentrationAt isdueto those mole- E MbCO
cules that ;lose -their ligands to -the solvent. Subsequently, conf
o.ther'ligands~willdiffuse from-the solvent toward' the-pro-
-tein, ener-the-heme pocket through the protein matrix and
bind to the iron,(Process S, S-"B--,A).

The description of ligand binding with the.reaction energy
landscape sketched in Fig. 2b corresponds to the motion of
a particle in a. fixed potential. This singleparticle model
reflects the general features of.the reaction well. Neverthe-
less, it-oversimplifies the picture, because it, does not account cc
for the influence of protein motions. It will be .shown in
Section.4 that a more realistic description of the binding AA
process has to incorporate time- and temperature-dependent 0  1  A 3

" barriers which arise from protein relaxations and fluctua-
tions. These are strongly influenced by the dynamics of the
surrounding solvent [2,20].

3. The Conformational Energy Landscape cc0
To understand the influence of protein motions on the

ligand- binding-reaction we must take a closer look at the
states in which these molecules exist and at the laws that
govern the transitions between the states. Most proteins
perform some kind of function such as transport of matter
or enzymatic activity. Therefore they must have at least two
different conformations which generally differ in structure Ccl
and properties. Myoglobin for example has a ligated and
an unligated conformation, Within a,given conformation, a EF2
protein molecule does not ,possess a unique ground state,
but a large number of nearly isoenergetic states, which-we
call conformational substates (CS) [21,22]. The phenome-
non CS is also found in other complex systems like glasses
[23] and spin glasses t24], Transitions between conforma- I CC2
tional'substates involve two different types of motions. Equi-
librium- fluctuations (EF) occur between the different con- Fig. 3
formational substates at sThe hierarchical arrangement of conformational substates (CS) insufficiently high% temperatures. MbCO. A one-dimensional cross-section through the multidimen-
Transitions between different conformations (states) are due sional conformational energy landscape is sketched as a function
to nonequilibrium motions. We call those functionally im- of the conformational coordinates of tier i (cc i)
portant motions (FIM). Both types of motions are not in-
dependent of each other, but related by fluctuation-dissi- major stretch bands for the CO ligands, which we denote
pation theorems,[25]. by A0, A, A3, corresponding to three different substates.

First evidence for the existence of conformational sub- Slight differences in their structure have been proven by
states came from the nonexponential rebinding observed measurements of the tilt angles of the CO molecules against
with flash photolysis experiments at low temperatures [12]. the heme normal [26] and by the x-ray structure analysis
Over the past 15 years, information about conformational [27]. The rebinding kinetics of these substates is markedly
substates has been continuously accumulated. Experiments different. Within each CSO substate the ligand rebinding is
on MbCO give evidence that the conformational substates non-exponential at low temperatures [20]. Therefore we
are arranged in a hierarchy [17] as depicted in Fig. 3. The conclude that each CSO contains a large number of CSI
diagram gives a one-dimensional cross-section through the substates. Lower tiers are less well explored. Rebinding ex-
multidimensional conformational energy landscape of periments after extended illumination give evidence for CS2.
MbCO. The substates are grouped into a number of tiers, The existence of even lower tiers of substates is implied by
three of which are shown in the figure. The substates of tier specific heat measurements on proteins at temperatures be-
0 (CSO) are separated by the highest energy barriers. Within low 10 K [28].
each of the CSO the molecule can assume a large number of The hierarchical arrangement implies that the system is
substates of tier 1 (CS1), separated by smaller barriers than only ergodic at sufficiently high temperatires where fluc-
the CS0. Each CSI is again subdivided into substates CS2 tuations within all tiers occur. As the temperature is lowered,
and so on. fluctuations will gradually freeze out, first among the sub-

Evidence for substates of tier 0 is derived from infrared states of the highest tier, then successively in the lower tiers.
absorption experiments on MbCO [20]. They reveal three The degree of nonergodicit) is thus dependent on time and
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temperature. The freezing of the EFO and EFI occurs very is frozen. Thus, after photodissociation the iron cannot
smoothly with temperature and is similar to a glass transi- move fully out of the plane. The structure of this low tem-
tion. The transition temperature depends on the glass tran- perature photoproduct is denoted by Mb*. Above 160 K
sition temperature T. of the surrounding solvent. Therefore, the iron is able to relax into the deoxy position on the time
we call the transition a "slaved glass transition". scale of a photolysis experiment. The motion of the iron is

The hierarchical arrangement poses restrictions -on the accompanied by an increase of the enthalpy barrier HBA for
dynamics of the system. A transition between two arbitrary rebinding. Consequently, a slowing of the kinetics is ob-
substates depends on the way inwhich the two are con- served.
nected in this hierarchical space. 'The connection may be Evidence for this scenario comes from kinetic experiments
ultrametric. Remarkable analogies between the dynamics of with Band III, a weak absorption banjin the near infrared
ultrametric systems and iproteins have been found [29]. (.-760 nm) that is only present in unligated myoglobin, ei-

ther deoxy Mb or Mb*. Band III arises from a charge trans-
uFluctuations fer transition involving iron d- and porphyrin n-orbitals

[31] and is therefore sensitive to structural details near the
4.1 The Relaxation Mb* - Mb heme iron. We studied this band in photolyzed Mb* (CO)

Below 160 K proteins are frozen in their particular sub- in the temperature range between 10 and 160 K. As ligands
states. Therefore, the rebinding is characterized by a barrier rebind, the area of this band decreases while its position
distribvtion g(HBA). Process I speeds up with increasing shifts to higher wave numbers. The explanation for this shift
temperature as expected from the Arrhenius law for the rate is as follows: Band III is inhomogeneously broadened. Dif-
coefficient k(HRA, T). Between 160 and 180 K this increase ferent substates give different contributions to Band III so
slows; above 180 K a reversal sets in so that Process I slows that it is approximately a Gaussian superposition of Lor-
down with increasing temperature (see. Fig. 4). entzians with peak positions v. Our experiments show that

the position v and the barrier height HHA are linearly related

.. [18]. Such a relation is expected if both the enthalpy barrier
MbCO and the charge-transfer transition depend in a similar way

,a on the out-of-plane distance of the iron. From the difference
0 of 116 cm - 1 between the position of Band III in deoxy Mb

and Mb* (CO) at 10 K and the measured relation between
HNA and v we estimate an increase of the barrier for rebind-

O -2- 160K ing of about 12 ki/mol as the iron shifts from the position
08oK in Mb* to the fully relaxed position.

(a) "XThis relaxation Mb*--+Mb can be introduced into the
-3 , , , -. kinetic equations that describe the rebinding process after

0 flash photolysis. The increase of the rebinding barrier is

modelled by

- HA(t, T) = Ho + AH* [I - * (t, T)],. (4)

o _2 210K Immediately after photodissociation the barrier height
os equals Ho. It approaches the value H0 + AH* with a time

(b) 90 dependence given by the relaxation function 0I* (t, T) as the

8 - -4 -2 o iron moves further away from the heme plane. Conse-
log t/3) quently, the rate coefficient for rebinding k(HBA(k. T), T) be-

Fig. 4 comes time-dependent. For a single barrier the differential
Rebinding data and fits to the relaxation model for MbCO. (a) equation dN,(t, T) = -k(HBA(t, T), T) x N1(t, T) leads to
Process I at 160- 180 K. (b) Process I at 190-210 K. Dashed lines:
Prediction for Process I if no relaxation Mb* -- Mb occurs. Solid
lines: The relaxation Mb* Mb was taken into account to fit the Nl(t, T) = exp k(HBA(t', T))dt' (5)
data (see Eq. (6)) 0 w

An explanation for this - at a first glance - surprising The rebinding data shu that the entire barrier distribution
behavior can be found by taking a closer look at the molec- shifts without markedly changing its shape. Therefore, the
ular structure of myoglobin. The room temperature x-ray fraction of molecules Na t, T) in the ensemble that have not
coordinates tell us that the iron atom is about 0.35 A a% a) yet rebound a ligand %Nithin the time t after the flash is given
from the heme plane in deoxy Mb [30]. On binding a ligand, by
the iron has to move closer to the heme. In MbCO, the iron
has been reported to be completely in the plane of the heme Ni(t, T) - J dH0 g(Ho) exp - S k(HBA(t', T)) d" . (6)
disk [27]. At temperatures below 160 K, the globin matrix 0 o
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The experiments show that the relaxation function is strong- 4.2 Equilibrium Fluctuations
ly nonexponential in time as we also observe when studying Molecular dynamics simulations show that the protein
protein -elaxations after pressure jumps [14]. A stretched structure has to fluctuate in order to open pathways for the
exponential fits our data well ligand to escape [36]. These motions set in at about 200 K

[15,37]. Our flash photolysis experiments confirm these re-
* (t, T) = exp -. (7) suits: Above 200 K some photodissociated CO molecules

If the temperature dependence of the rate coefficient K* (T) escape into the solvent, and the subsequent rebinding is

is described by an Arrhenius relation, the pre-exponential, approximately exponential in time (see Fig. 1):

factor becomes, unphysically large. We'consequently use. a Ns (t, T) = Ns (t, T) exp <s> t] (9)
relation that is known to describe relaxation phenomena in
glasses and synthetic polymers, We decompose the rebinding curves into the solvent process

K*(T) = A* exp [-(E*/RT)2 ].. (8) Ns V, T) and the internal process N(t, T) as shown in Fig.
5a. At early time N, (t, T) decreases slowly and non-expo-

This relation has been derived for a random walk of an nentially. From a certain time T, on a nearly exponential
excitation within a Gaussian density of states [32,33,34,35]. drop-off is observed leading to a rapid depletion of the in-
In Fig. 4 we show the rebinding of MbCO together with ternally rebinding molecules. It is caused by two effects: (i)
fitted curves. The reversal of the kinetics with leinperature CO molecules migrate into the solvent and rebind from
near 180 K is very well described by a barrier distribution there. (ii) The distribution of rate coefficients k(HBA, T) col-
g (HDA) that shifts as a whole to higher values without chang- lapses into an average value. We assume that both effects
ing its shape, The value AH* of 11 k J/mol is in good agree- are due to equilibrium fluctuations in tier 1 (EF1), charac-
ment with the estimate of 12 kJ/mol from the kinetic ex- terized by an average rate coefficient (ic>. The inverse of
periments on Band 11. The other parameters obtained from the time T

i gives an estimate for the fluctuation rate (l>.

the fit are A* = 10s -1, E* = 10 kJ/mol, p 0.24. The influence of the equilibrium fluctuations can be ex-
plained with an effective enthalpy distribution, gfu(HnAT),

T as sketched in Fig. 5b for T - 240 K. It is much-broader
than the low temperature distribution because of the relax-

0o- .ation Mb* -* Mb: Molecules with small barriers rebind
W N 20K) ligands at early times without having shifted significantly,

-2,Omolecules with high barriers rebind more slowly and there-
N1(t, 240K) fore shift to even higher barriers before rebinding. The dis-

Z tribution g f(HBA, T) is divided into two parts separated by
a -3 the enthalpy H, (7) given by
0

-41 (a -2 H,(T) = RT In[ADAT/(Kl> To). (10)-8 -!4 -JO
log t/a) Proteins in the shaded area experience equilibrium fluctu-

.08 ations. They rebind the ligand with an average rate (kBA>
< <kl> either from the pocket (Process I) or from the solvent
(Process S).

0.8

01, 4.3 The Viscosity Dependence of Protein Motions
f-. 0 4  The relaxation Mb* --, Mb and the equilibrium fluctua-

%. aed tions.(EF1) appear to have their origin in quite different
02 types of motions because the distribution of barriers g (HBA)

0 A(b) shifts without narrowing at temperatures around 180 K. We

.0 30 40 50 tentatively assign the relaxation Mb* -- Mb to the second

H, (240K) H B A (kJ/mo 1) tier of the substate hierarchy and call it FIM2.
Another difference between the two dynamic processesFig. S becomes obvious when looking at rebinding curves that

(a) The measured survival probability N(t, 240 K) is plotted as a

function of fogt and decomposed into the exponential solvent were obtained using samples with different solvents. In prin-
proces -Ns(t, 240 K) and the internal process Ni(t, 240 K). ciple, both the relaxation Mb* --+ Mb and the equilibrium

(b) The distribution function gf (HBA, T) at 240 K. Protein mole- fluctuations could be influenced by the viscosity of the sol-
cules in substates with HBA < H, have rebinding rates faster than vent around the protein molecules. Fig. 6 shows the kinetics

T . They rebind before hopping to another substate. Proteins
in the hatched part have HBA >H, and therefore kBA <T-I. of Process I for MbCO in three solvents with different vis-
They fluctuate from CS to CS; their ligands can either rebind cosities. All three sets of data were taken at 250 K. The
internally or move into the solvent nonexponential part of the rebinding curves is alm,'st iden-
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Stiffness Effects in Multidimensional Diffusive Barrier Crossing
Noam Agmon and Savely Rabinovich
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Chemical Kinetics / Diffusion / Liquids / Photo Isomerization / Viscosity
The, model of Agmon and Kosloff for two.dimensional diffusive barrier crossing is extended. We dem.
onsta!,.hnw.oan-ncrease in stiffness of the potential perpendicular to the reaction coordinate leads to
viscosity dependent rafes which are closer to the one-dimensional Kramers result. The range over which
the dynamics are truly two dimensional is characterized by a fractional viscosity dependence of reaction
rates and viscosity dependent activation energies. It is a transition region between Kramers behaviors
observed in the two extreme limits. A simple kinetic approximation rationalizes these observations as

arising from two competing_ ..,iways.-It shows surprisingly good agreement with the full calculation.

1. Introduction agreement with experiments showing the fractional viscosity
In the last decade the Kramers [1] model of diffusive dependence, Eq. (1), can sometimes be obtained [16] using

barrier crossing has been revived and extended as, part of the conventional Kramers theory with microscopic friction
an effort to understand molcular chemical transformations assumed proportional to the rotational diffusion lifetime. (iii)
in solution. Some of the review articles published in the last Potentials may vary systematically with solvent composition
few years are listed below [2-6], Until recently much of [18,19]. (iv) Multidimensional effects may be dominant
the theoretical research focused on non-Markovian (me- [10-13]. While we concentrate below on multidimensional
mory) effects and frequency dependent friction [2- 8]. In effects, this by no means implies that we believe other effects
this approach other degrees of freedom aie usually repre- listed above to be unimportant in explaining the experi-
sented as a harmonic bath. It seems that presently attention mental results.
is directed towards the understanding of truly multidimen- To our knowledge, Agmon and Kosloff [11] were the first
sional barrier crossing phenomena [9-13]. to consider the explicit solution for diffusional barrier cross-

Advances in theory are motivated by parallel progress in ing dynamics in more than one degree of freedom, with
experimekit, especially in the study of photochemical iso- anisotropic diffusion and a potential more general than a
merization following ultrafast laser excitation [14]. One channel connecting reactants and products [10]. Their
model system that has been extensively studied is the iso- model was motivated by earlier work on hemeprotein dy-
merization of stilbene, both in solution and pressurized namics [9] and by the experimental observation [15] that,
gasses [14-23]. Focusing on the high friction limit, it is while trans-stilbene shows a fractional viscosity dependence
often found [15-17] that the dependence of the isomeri- (a < 1), its stiff counterpart (trans-"stiff" stilbene, see Fig. 1)
zation rate coefficient, k, on the solvent's macroscopic (shear) conforms to Kramers kinetics (a = 1). The evident difference
viscosity, q/, is weaker than predicted by the Kramers theory between these two molecules is that "stiff' stilbene has only
[1]: Instead of an inverse viscosity dependence, one has one active degree of freedom in its isomerization process

(rotation around the double-bond, dihedral angle 0),
k = blia, 0 < a < 1 (1) whereas stilbene has an additional rotational motion avail-

able (around the phenyl-carbon bond, dihedral angle 4i).
with constant a and b. A similar viscosity dependence is also The effect of the perpendicular degree of freedom, 0, is mani-
observed in ligand binding to myoglobin [24]. fested in two ways. First, the barrier for 0-isomerization is

The above deviation from Kramers' prediction can be expected to decrease as the phenyl rings are rotated out of
explained in several ways: (i) Non-Markovian theories planarity, due to a decrease of n-orbital coupling. Such an
[2,5,7,8] can predict slower than 1,ij viscosity dependence, effect still avaits verification by quantum chemistry calcu-
though often with non-realistic potential parameters lations [25]. Second, the diffusion tensor in these two co-
[15,17,20a.. (ii) Macroscopic viscosity may be a poor ap- ordinates is expected to be anisotropic. The phenyl ring
proxmnation to the microscopic friction. Indeed, better rotation displace much lebs bohent than the isomerization

Ber. Bunsenges. Phys. Chein. 95 1991 Ao. 3 ,. VCil Verlag geselhcaft mnb!l. If -6940 JIfemheun. 1991 0005-9021,91, 0303-0218 S 3.50 t .25,'O
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motiofiand ,s therefore less sensitive'to macroscopic vis- with the functions Vo and VO given in'Ref. [11]
cosity. In addition, the 0-motion might be less viscosity sen-
sitive when, the, phenyl rings cut through the solvent with VeO0 , 0) = Qo [3cos(20) - 6cos(40) + cos(60) (3a)
their-narrow, side-i.e.,,the diffusion coefficient in 0 decreases 4 4cos (0)] [1 + a o'0]/[ a+ 1)]
-as the phenylrings are rotated' out of plane [26]. Thislast
effect has not yet been incorporated in'the model.

V(,)= Q¢[3cos(2'k) - 4cos(4 b) + cos(6qb)]/8 (3b)

R with Qo = 3 and Qj = 2 energy units (these units were cho-
H 4_ sen such that the barrier resembles that of stilbene in al-

H kanes, ca. 14.7 kJ/mol) and a = 4. For fP = 0 the potential in
Eq. (2) reduces exactly to that of Ref. [11]. Increasing values
of P mimic increasing stiffness of the phenyl ring rotation

t - stilbene I' - " stiff "stilbene (0-coordinate). Experimentally, such increased stiffness can

Fig. I be obtained by a series of aliphatic~rings of decreasing size
Chemical structure of stilbene andbiindanylidene ("stiff"stil- e. g., 7-5 membered rings [16b, 22]. We stress that the stiff-

bene) ness parameteis, fP, never modifies the energy profile along
the one-dimensional projection of the reaction coordinate
(0) = 0). A comparison of a "normal" (P = 0) and "stiff"

By solving numerically the time-dependent Smoluchowski (P > 0) 16tential is shown in Fig. 2: The initial trans config-
equation in two dimensions for a potential surface and dif- uration with in-plane phenyl rings is at the origin of the
fusion tensor with the above mentioned properties, it was coordinates (0 = 0, 0 = 0) while the final "perpendicular"
shown[11] that viscosity dependences of the form [1] arise, conformation is at 0 = /2 and 4' = 0.
However, it was never explicitly demonstrated that the ki- The diffusion tensor, D, is assumed diagonal and the di-
netics become more Kramers-like as the potential along the agonal elements are denoted by Doe and DOO. As in
perpendicular coordinate 4' becomes stiffer as, for example, Ref. [11], we assume that
one expects for "stiff"-stilbene. In the present contribution,
we extend the results of Ref. [11] by adding to the potential

surface a parabola in 4' and investigating the viscosity de-
pendence as a function of its stiffness. The investigation in- in units of radian'/time, while Doe varies. This represents an
voles a wide range of viscosity and temperature. A deeper extreme idealization of a situation where the smaller am-
investigation of two dimensional models is timely, especially plitude motion of the phenyl ring is less sensitive to solvent
because in the last year or so several experimental results viscosity compared with the larger amplitude isomerization.
have been interpreted with the aid of similar ideas The rate coefficients are considered a function of DFOI, which
[20b- 22]. is assumed proportional to the macroscopic viscosity, q/. In

relation to interpretations [16] stressing the role of devia-
2. Theoretical Procedures tions from the Stokes-Einstein hydrodynamic relation, we

We investigate below a simple extension of the Agmon- note that here the reaction coordinate 0 strictly conforms
Kosloff hypothetical stilbene potential [11], namely to such a relation, while the assumed (large) deviations from

classical hydrodynamics are only in the perpendicular co-
V(010) = Vo(0,4) + VOO(,4) + p4, 2  (2) ordinate, 4).

0.5

0 .

-0"f-e1.0 -0.5 0. 0.5 1.0 -1.0 -0.5 0. 0.5 1.0
0/7T (rod)

Fig. 2

Effect of the stiffness parameters, /3, on the potential surface, Eqs. t2) and (3). Equpotential contour bpaings are 1 and 2 energy unit for
fl = 0 and 10, respectively
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The dynamics-on the potential surface are assumed [11] however, persists only for the first few time steps during
to obey the Smoluchowski (diffusion-in-a-potential-field) which the initial distribution thermaizes in the reactant's
equation well. As long as the isomerization barriers are high, the

barrier crossing process evolves on a considerably slower
.ap(, , t)/Ot = V D '[V + VV(O, O)/kB T] p(O, 0,t) (5) time scale.

A detailed description of the computational procedures is
for the time evolition of the probability density distribution, given in Ref. [11], where the spatial operator was evaluated
p(O, 4,t), in the two dimensional space (0,4,). In Eq. (5), T is by a fast Fourier transform (FFT) routine, and time evo-
the absolute temperature and kB is Boltzmann's constant. lution obtained by Chebyshev propagation. The Chebyshev
The initial distribution is a delta function at the origin of expansion [27] allows us to take comparably large time
the coordinates, steps. Unfortunately, the FFT algorithm may be tricky to

implement, and does not easily handle delta function dis-
p(O,0,O) = 6(0) 6(4). (6) tributions or complicated boundary conditions. In the pres-

ent calculation we have replaced the FFT procedure by a
This differs from the initial distribution in Ref. [11], which Master operator. This amounts to discrctizing the (0,4,)
was like a Gaussian centered at the origin. This difference, plane and assigning transition probabilities among nearest-

0.5

0, 10 t=4

-0.5

0.5 . .

-0.5

kc 0.5

0. Q 0 t=12

-0. 5

0.5

.0. 00t=16
-0. -. 5 . 0.5 1. 0 . -

0. 0.5 1.0

0hr (rad)
Fig. 3
Effect of stiffness on the densit) distribution, p(O,tp.,. p-[ipAL,tctd 0i th potcntial surfaies of fig. 2. Lugarithmi'. ontours for p " 2",
100, n = 1,2....
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neighboring points along 0 or q0, (no diagonal transitions Here kf is the forward (reactants --- products) rate coefficient,
are allowed) in such a way that Eq. (5) becomes a Master while k, is a similar quantity for the reverse direction. The
equation with detailed balancing. While additional details ultimate equilibrium survival probability, S,,,, can be cal-
may be found in Refs. [9,28,29], we stress that implement- culated analytically from the potential as the integral of
ing finite-differencing in space via a prescription in- which exp[- V(O, k)IkBT] over the reactants' region divided by
detailed-balancing is rigorously obeyed, ensures that as its integral over the whole space. With the knowledge of So,,
t--- co we obtain the exact equilibrium distribution namely, we fit,our S(t) data to Eq. (7a) to determine r and then
exp [- V(O, 4)/ka T] properly normalized. The Master op- evaluate (say) the forward rate coefficient as kr= (1 - S)ft.
erator is one line of computer code, compared with the large This procedure differs from that of Ref. [11], which used
software package needed to implement the FFT routine, both S. and r as fitting parameters.

To obtain the reaction rate, we first integrate the density
distribution, p(O, q5, t), over the reactants' region to obtain 3. Results
the reactants "survival probability", S(t). This quantity is We have propagated the Smoluchowski equation (5), starting
denoted by Q(t) in Ref. [11]. The reactants' region is as- from a delta-function initial distribution, for several values of
sumed to be separated from the products' region by the ridge Doo(DOO = I rad2/time) and three values of the stiffness parameter,
line on the potential surface. For a potential with the simple /, in the potential function of Eq. (2). The probability density was
shape shown in Fig. 2, these ridges are straight lines parallel subsequently integrated and analyzed via Eq. (7) to yield rate co-

efficients. These calculations were carried out on a Convex corn-
to ', at 0 ±+0.26it. Next, we fit S(t) to the solution of a puter with single precision accuracy and a grid of 64 x 32. This grid
2-state kinetic scheme, reactants # products, which is represents the rectangle -n < 0 <9 n, -t/2 < 4 ! 7r/2, with

periodic boundary conditions at its edges. Propagations on a dou-
S(t) = S,, + (1 - S,,) exp(- t/) (7a) bled grid (128 x 64) yielded rate coefficients that differed by 5% at

most. In several cases, we have propagated to extremely long times
so that the final distribution was very close to the equilibrium

1 = kt+ , S.o = kT . (7b) density. We verified in these cases that the analytic values of S.,

Table I
Parameters used in the propagation of Eq. (5) on a 64 x 32 grid and parameters obtained from the kinetic analysis via Eq. (7), D, = 1 rad2 /time. no, At
and nj are number of Bessel coefficients, time step and total number of time steps, cf. Ref, [1 1]. Note the general agreement of k, for/3 0 and ko T = 0.6
with data in Table 1, runs I and 2, of Ref. [11]

kaT # S0  Doo no At nt 1000/t 1000 kr

0.4 0 0.0676 to 229 0.1 100 131.7 123
1 217 0.5 100 69,8 65.2
0.1 226 1.0 100 35.0 32.7

1 0.0205 10 229 0.1 500 66.3 64.9
1 217 0.5 400 10,7 10.5
0.1 226 1.0 1000 1,46 1,43

0.6 0 0.1514 100 219 0.01 200 7451 6323
10 229 0.1 30 1006 854
1 139 0.2 30 249 210
0.1 226 1.0 60 62.6 53.0
001 216 1.0 200 7.25 6.17
0.001 215 1.0 200 0.755 0.640

0.0733 100 219 0.01 200 6307 5844
10 229 0.1 50 688 638
I 217 0.5 80 97.4 90.3
0.1 226 1.0 200 12.4 11.5
0.01 216 1.0 2000 1.39 1.28
0001 215 1.0 20000 0.148 0.137

10 0.0639 100 219 0.01 200 5100 4773
10 229 0.1 100 516 481
1 217 0.5 200 51.3 48.1
0.1 219 0.5 600 5.13 4.81

1 0 0.2385 10 229 0.1 200 5416 4221
1 100 0.1 200 668 509
0.1 226 1.0 200 91.6 69.8

1 0.1881 10 229 0.1 200 4276 3470
1 139 0.2 200 486 394
0.1 226 1.0 300 55.7 45.1

10 0.1589 10 229 0.1 200 3127 2630
1 139 0.2 300 313 265
0.1 226 1.0 500 31.8 26.7
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are reproduced to 3-4 digit accuracy. Propagation parameters and Fig. 5 shows the forward rate coefficient, kf, obtained from the
rate coefficients obtained are collected in Table 1. above kinetic analysis, as a function of viscosity, ?I cc D00

1. Over
Fig. 3 compares the time dependence of the probability density, the anisotropy range in the diffusion tensor considered in Ref. [11],

p(O, O,t), for two values of P. When D00 = 0.1 and P = 0, a consid- namely 0.1 < D00/Doo < 10, we obtain straight lines on a log-log
erable fraction of the flux bypasses the 0 = 0 barrier and proceeds scale (Fig. 5). The slope of these lines yields the parameter a. The
via the "indirect" route that combines isomerization (0-motion) with parameters a and b of Eq. (1) are collected in Table 2. For/P = 0,
phenyl ring rotation (4-motion). This agrees with the results in we find a = 0.60, in excellent agreement with Ref. [11]. As P is
Fig. 4 of Ref. (l 1]. As P increases, the indirect route becomes higher increased, the indirect path becomes less probable (see Fig. 3) and
in energy (see Fig. 2), so most of the flux flows via the direct barrier a increases smoothly to unity. This qualitatively agrees with the
crossing route, and the reaction becomes more "one-dimensional". experimental observation for stilbenes, whose behavior becomes

more Kramers-like when phenyl-ring rotation is restricted e.g., in
"stiff" stilbene El5,16]. As the dynamics become more one-dimen-

,=, sional, the magnitude of the rate coefficients decrease due to the
elimination of alternate pathways. We note that experimental rate

I Dee= 1 0 coefficients for stiffened stilbene derivatives are typically larger than
-1 for the unbridged molecule [22]. Within the present model, this isV 1  not a consequence of reduced dimensionality. It could be attributed

V? E16] to a decrease in the one-dimensional barrier heigth, perhaps

A -2 due to electronic interactions with the bridging atoms.
,.4-

(n
0 1 2 3C

timet
I. E-1

Fig. 4
An example of the kinetic analysis of the calculated density distri- o
bution by Eq. (7). Open circles represent the density, p(O,,), o #=E-2
integrated over the reactants' region = 0.26n < 0 < 0.26n, 0 O p 0
-n/2 <9 T/2, for every fifth time step - I -3 0 P=1

1 E-4
Fig. 4 shows a typical kinetic analysis by the two-state kinetic . 1E-2 1E-1 1 10 100 1000

model, Eq. (7). We usually exclude from the analysis the first few "D-o
time steps, during which the initial distribution reaches quasi-equi- Fig. 6a
librium in the reactants' well, and very long times for which the Viscosity dependence over an extended range. Full curves are in-
difference S(t) - S., becomes smaller than the numerical accuracy terpolation by 4'th order polynomials. Dotted line is a fit to the
of our calculation. Occasionally, we found that the decay of S(t) - high viscosity end of the / = 0 data, showing the convergence to
S.o was no , yell represented by a single exponential over the whole a Kramers behavior in this limit. Data from Table I
time range. In these cases we used the initial decade of the decay
in the analysis.

1.0.6 kBT=. 6  0

.6kT 0.6
.o.4 #=o

,.0.104 0

0 0.2o
0 -p=o (a=0.60) . -I

- P=i (0=0.87) 0.0
S.0 A - 0=1o(a=1.o0) 1E-2 1E-1 1 10 100 1000

0.1 1.0 10.0
O ;1 Fig. 6b

Fig. 5 A different representation of the data in Fig. 6a, showing the vis-

Viscosity dependence of the reaction rate coefficient (Table 1) for cosity dependence of the rate coefficient times the viscosity. Full
curves are the fractional viscosity fit (Fig. 5) utilizing the parametersintermediate anisotropy variations. Les represent a fit to Eq. (1) from Table 2

yielding the parameters collected in Table 2

In Fig. 6 we have considerably extended the anisotropy range. A
Table 2 propagation for the largest anisotropy value D/Doo = 1000, re-
Fitting parameters of the A-B T = 0.6 data (Table 1, Fig. 5) to the fractional quircd some 100 hrs of Convex time. The results show that, for the
viscosity dependence, Eq. (1) present model, the power law behavior depicted by Eq. (1) actually

represents a transition region between the two asymptotic limits of
P 0 1 10 large and small anisotropy. In both of these limits one has a Kra-

mers l/?I behavior, though with a different prefactor. This agrees
a - 0.603 0.873 1.000 with Eq. (16) of Ref. [1 i]. The reason why the dynamics become
b 0.212 0,0870 0.0481 effectively one dimensional in these two limits is physically clear:

For large D#0 the density has no time to develop in the orthogonal,
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0. diretioh. The dynamics then represents direct-over the barrier
evolution of a- "frozen" (in 0) initial distribution. In, the opposite
limit f. small Dve, the initial density rapidly equilibrates in the 1.000 10,2.66
perpendicular diiction. Thereafter, it retains its shape and dimin-
ishes in, amplitude, as an, increasing fraction of the -population in
the reactants' region crosses-the ridgeline into theproducts' region. kf0 *100  1,2.42

The rate~of this process is governed by the magnitude of D00 at
various 4, values. Since we have assumed that Doe scales as 1/1 for 0.010 -. 1,2.30
all values of 4, we regain the Kramers behavior in this limit too.
Most of the photoisomerizationexperiments (14-22]-have not
explored such huge viscosity variations in the diffusive regime. 0.001,

1.0 1.5 1 kT2.0 2.5
_ 1 /kT

Fig. 9
o 1.0 Temperature dependence of the reaction rate coefficient for a "stiff-

ened" potential surface. See caption of Fig. 8 for details
0

0 - p=0 (a=0.89) added data ka T= 0.4. For large D00 (small viscosity) the activation
.,. - energy is large, since the majority of the reactive flux proceeds

A • -P=1 (0=04) directly over the relatively large barrier pertaining to the 0 motionA - p=10 (0=1.00) at 0 = 0. For small D00, much of the flux goes via the indirect path

0.1- 1which involves lower isomerization barriers, resulting in a consid-
D-1 erably smaller activation energy. This behavior is in qualitative

agreement with the experimental data shown in Fig. 3 of Ref. [19b].
Fig. 7 The effect of stiffness on the viscosity dependence of the activation
Viscosity dependence at a higher temperature, Lines are a fit to energy is shown in Fig. 9. As observed above (see Figs. 5 and 7),
Eq. (1) the variation of a with T diminishes as, with increasing stiffness,

a- 1. Indeed we find (Fig. 9) that for P = 1 the variations in EA
with viscosity are smaller than for P = 0. One might say that such

Returning to more moderate variations in anisotropy, we have variations [19b] are an indication of truly multidimensional dy-
investigated temperature effects on the observed fractional viscosity namics. It is therefore expected that "stiff"-stilbene will show a
behavior, Eq. (1). Fig. 7 shows the viscocity dependence of the viscosity independent EA.
reaction rate for a higher temperature, again for the three values
of the stiffness parameter, Pt. As expected, increasing temperature
results in increasing reactivity and decreasing selectivity, as depicted Table 3
by the increase in the slope, a. The increase in a is more prominent Minima analysis on the potential surface of Fig. 2, Eqs, (2)-(3)
for smaller a values. Since increasing T is equivalent to a scaling-
down of th, potential surface, it leads to a decrease in the variation Minima A B C D
of the barrier height along the perpendicular coordinate and hence
to a more Kraniers-like behavior 1:].Relative energy) 0 -0.20 -0.504 -1.52

Coordinatesb) (0, 0) (0, 0.5) (0.49, 0.5) (0.49, 0)
Force.constants') (19.5, 7.6) (3.9, 24.4) (10.7, 22.0) (53.6, 10.0)

=O Energies relative to the origin of the coordinates.
1.00 1. ) 0 and 06 values in units of radian/n.

k I ..... ... fo and fo in units of energy/radian2.

0 .10 4. A Kinetic Model
In order to qualitatively understand the physics behind

.1. 0.51 the effects demonstrated in Figs. 5-7, it is instructive to
01. tconstruct a simple kinetic model. We apply the model to1 /kT the case where P3 = 0. The model involves four states, A, B,

Fig. 8 C and D, corresponding to the four distinct wells in the

Temperature dependence of the reaction rate coefficient. Lin"es are potential surface of Fig. 2. The coordinates (0,01), energies
a fit to the Arrhenius expression, Ink, = -EA/kB T + const. The and force-constants (foo,fo,) of the four states, as evaluated
two numbers next to each line denote the values of Do# and EA, from the potential surface, Eqs. (2)-(3), are collected in
respectively Table 3. Between the four states one has transitions accord-

ing to the following kinetic scheme
In Ref. [19b] the photoisomerization of trans-stilbene was stud-

ied as a function of temperature in isoviscous alcohols. A depend-
ence of the activation energy, EA, on viscosity was interpreted as a B - C
failure of the fractional viscosity behavior, Eq. (1). It is more ap-
propriate to interpret the observed behavioras a tesliperature de- k, 21k-:2 (8)
pendence of a. In Fig. 8 we have rearranged the data of Figs. 6 and A : D
7 to yield Arrhenius plots at different Doe values. To these we have ,
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In this scheme state A represents the initial state, A and B - V(0o) is the classical barrier height along g. f,, and f~0
are the reactants while C and D are the products. This are the corresponding well and barrier force-constants along
corresponds most closely to the dividing surface employed the direction a perpendicular to 0. Using the data in Tables
in our full calculation, with an absorbing boundary condi- 3 and 4, one can evaluate the rate coefficients k,, i = 1, 2,
tion at the product states (C and D). There are two paths -2 and 3, to be used-in Eq. (9). These coefficients were
leading from initial state to products: The direct path with multiplied by a statistical factor of 2, to account for the fact
kdir = k, and the indirect path, involving the intermediate that each well in Fig. 2 leads to two equivalent wells, and
state B. collected in Table 5.

The effective rate coefficient for the indirect path, knd,
is evaluated under steady-state conditions, assuming Table 5
d [B]/dt = 0. This gives Rate parameters for the reaction scheme in Eq. (8)

Rate coefficient ki/Doo k2/Dfl k_2/D,,, k3ID00
kind = k2 k3  (9) Transition A --e D A--B B --- A B--Ck3 + k-2'

Magnitude 0.0846 0.326 0.808 0.812
The overall forward rate coefficient for the conversion of A
to products (C u D) is __

kt = kdir+kind. (10) fl=0

Since k3 and kt will be proportional to D00, hence to I/fl, 0 ------------
while k2 and k- 2 will-be proportional to D00 and are hence -1 kInd " .

constants, the overall viscosity dependence has the form
' -2 ~dlr "', ' =

a C " ,.,

kf= 1 + b--- + ___ __) -_2 -_

with a, b and c constants. This form indeed shows a 1/ -log 10 D*s
behavior in the two extreme limits of q -0 and q -.- co (cf. Fig. 10
Eq. (16) in Ref. [11]), with a transition region in between. Viscosity dependence of the reaction rate coefficient as calculated

To evaluate kf from Eqs. (9) and (10), we need to know from the kinetic model, Eqs. (9) and (10). The overall rate coefficient
(full curve) is the sum of the contributions from the direct andthe rate coefficients for -the various steps in the reaction indirect pathways (dashed curves). Circles denote results from exact

scheme, Eq. (8). We estimate these from the one-dimensional propagation, Table I
Kramers expression [1] which, in the diffusive regime for
parabolic well and barrier, becomes [13] The outcome of the kinetic approximation is shown in

Fig. 10. While the direct rate coefficient is a straight line on
2 tkB Tki = ('-fe Ie ffoIj)"2 D,, exp -A Vt/kB T] . (12) a log-log plot, the indirect rate coefficient is constant at small

viscosities and Kramers-like at large viscosities, see Eq. (11).
Heref,0 andj,,e are the force-constants at the reactants' well When these two curves intersect, they give rise to the full
and the barrier, respectively. Both are evaluated along some curve, which shows the above mentioned transition between
one dimensional coordinate, a (a = 0 or 4 in the present the two asymptotic limits. In simple chemical language, in-
case). In other words, the potential near the reactants (0o) creasing viscosity induces a change of mechanism, from a
and transition state (at) is approximated (up to a constant) direct to an indirect pathway. As the stiffness, P3, is increased,
as - e(e-e) 2 and .0(e(0 -t) 2, respectively. A V* - V(ot) the direct pathway dominates: The curve for kind drops untileventually is does not intersect the kd,, curve at all. Hence

as fl-oo we get that kfl-kd,, with a pure Kramers behavior
Table 4 over the whole viscosity range.
Saddle point analysis on the potential surface of Fig. 2, Eqs. (2)-(3)

Saddle-point. AD BB BC CD 5. Conclusion

We have extended the two dimensional diffusive barrier
Relative energy') 3.46 1.99 0.49 1.23
Coordinates) (0.26, 0) (0,0.28) (0.26, 0.50) (0.49, 0.30) crossing model of Agmon and Kosloff [11] in several direc-

Force-constantsc) (-36.8, 2.1) (10.2, -19.9) (-7.34, 29.9) (25.6, -21.2) tions, with the following conclusions:
(a) Over an extended anisotropy range in the diffusion

a) Energies relative to the ongin of the coordinates, tensor, the rate coefficient shows a Kramers-like behavior
hI 0 and 0 values An unitts f radianin for the saddle-puint l6ated in between in the two extreme limits with a transition region, which

the two indicated wells.
Sfoandfo,, in units ofenergy/radian 2. Negative value indicates a maximum can be described by a fractional viscosity dependence,

in the given direction. Eq. (1).
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(b) As the stiffness-of'hlie potential in the perpendicular [5] 3. T. Hynes, Annu. Rev. Phys. Chem. 36, 573 (1985); J. Stat.
coordinate is increased, the transition region decreases until Phys. 42, 149 (1986).
the dynamics become Kramers-like over the whole aniso- 6] P. Hanggi, J. Stat. Phys. 42, 105 (1986); 44, 1003 (1986).

[7] R. F. Grote and J. T. Hynes, J. Chem. Phys. 77, 3736 (1982).
tropy range. [8] E. Pollak, J..Chem. Phys. 86, 3944 (1987).

(c) In ,the regime where two dimensional dynamics is im- [9] N. Agmon and J. J. Hopield, J. Chem, Phys. 79, 2042 (1983).
portant, the power a in Eq. (1) increases with temperature. [10] M. Berkowitz, J. D. Morgan, J. A. McCammon, and S. H.
This is manifested by an Arrhenius activation energy which Northrup, J. Chem. Phys. 79,5563 (1983); R. S. Larson, Phys-

ica 137A, 295 (1986).
varies with anisotropy. As the stiffness of the potential in- [11] N. Agmon and R. Kosloff, J. Phys. Chem. 91, 1988 (1987). See
creases, this temperature effect diminishes. also: A. D, Kaufman and K. B. Whaley, J. Chem. Phys. 90,

(d) A simple kinetic scheme, employing four states with 2758 (1989).

'transition rates evaluated from the two dimensional poten- [12] A. M. Berezhkovskii, L. M. Berezhkovskii, and V. Yu. Zit-

tial surface by the one-dimensional Kramers expression, serman, Chem, Phys. 130, 55 (1989); A. M. Berezhkovskii and
V. Yu. Zitserman, Chem. Phys. Lett. 172, 235 (1990); Physica

produces a qualitatively good agreement with the exact so- A166, 585 (1990).
lution of the two-dimensional Smoluchowski equation. [13] M. M. Klosek-Dygas, B. M. Hoffman, B. J. Matkowsky, A.
Within this framework, the observed behavior is a conse- Nitzan, M. A. Ratner, and Z. Schuss, J. Chem. Phys. 90,1141
quence of a viscosity dependent change in mechanism. (1989).

It is interesting to note that, for anisotropy, D~/Doo, [14] P. F. Barbara and G. C. Walker, Rev. Chem. Intermediates
I 10, 1 (1988) and references therein.

which is proportional to the macroscopic viscosity, all of [15] G. Rothenberger, D. K. Negus, and R. M. Hochstrasser, J.
the above conclusions are borne out by photochemical Chem. Phys. 79, 5360 (1983).
isomerization experiments: [16] (a) M. Lee, A. J. Bain, P. J. McCarthy, C. H. Han, J. N.

(a) Experimental rate coefficients conform to fractional Haseltine, A. B. Smith III, and R. M. Hochstrasser, J. Chem.v tepem encae oeraic i tent cof orm t frainal Phys. 85, 4341 (1986); fb) M. Lee, J. N. Haseltine, A. B. Smith
viscosity dependences over a limited viscosity range III, and R. M. Hochstrasser, J. Am. Chem. Soc. 111, 5044
,[15-17]. (1989).

(b) "Stiff"-stilbene shows a Ifil viscosity dependence, as [17] S. H. Courtney and G. R. Fleming, J. Chem. Phys. 83, 215

opposed to stilbene which shows the fractional viscosity de- (1985); S. K. Kim and G. R. Fleming, J. Phys. Chem. 92, 2168

pefidence [15,16]. (1988); G. R. Fleming, S. H. Courtney and M. W. Balk, J.
Stat. Phys. 42, 83 (1986).

(c), Stilbene has a viscosity dependent activation energy [18] V. Sundstr6m and T. Gillbro, Chem. Phys. Lett. 109, 538
for its isomerization, the larger the viscosity the smaller the (1984); Ber. Bunsengcs. Phys. Chem. 89, 222 (1985).
activation energy [19b]. [19] (a) J. M. Hicks, M. Vandersall, Z. Babarogic, and K. B. Ei-

(d) Isomerization of substituted stilbenes can be inter- senthal, Chem. Phys. Lett. 116,18 (1985); (b) J. M. Hicks, M.
T. Vandersall, E. V. Sitzmann, and K. B. Eisenthal, Chem.

preted [22] with the aid of kinetic schemes which are similar Phys. Lett. 135, 413 (1987).
to Eq. (8). [20] (a) N. Sivakumar, E. A. Hoburg and D. H. Waldeck, J. Chem.

Although this qualitative agreement between model and Phys. 90, 2305 (1989); (b) N. S. Park and D. H, Waldeck, J.
experiment does not necessarily imply that the model is the Chem. Phys. 91, 943 (1989); Chem. Phys. Lett. 168,379 (1990).
correct description of experiment, it will be interesting to [21] (a) Ch. Gehrke, J. Schroeder, D. Schwarzer, J. Troe, and F.

Vo13, J. Chem. Phys. 92, 4805 (1990); (b) J. Schroeder, D.
check its predictions experimentally. For example, one could Schwarzer, J. Troe, and F. VoB, J. Chem. Phys. 93,2393 (1990).
check whether the activation energy for isomerization of [22] W. Rettig and W. Majenz, Chem. Phys. Lett. 154, 335 (1989);
"stiff" stilbene is viscosity independent. It would also be R. Lapouyade, K. Czeschka, W. Majenz, W. Rettig, E. Gila-
interesting to initiate measurements at extremely high vis- bert, and C. Rulli~re, to be published.

[23] P. M. Felker and A. H. Zewail, J. Phys. Chem. 89, 5402 (1985).
cosities in an effort to determine the asymptotic form of the [24] D. Becce, L. Eisenstein, H. Frauenfelder, D. Good, M. C.
viscosity dependence. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorensen, and K.

We thank Ronnie Kosloff, Abraham Nitzan and Wolfgang Rettig T. Yue, Biochemistry 19, 5147 (1980).
for frutfulk discusons. os uppoAbrtedm bytgr at umern 8 7 [25] J. Troe and K.-M. Weitzel, J. Chem. Phys. 88, 7030 (1988).

for fruitful discussions. Work supported by grant numer 86-00197 [26] N. Agmon in "Tunneling", ed. J. Jortner and B. Pullman,
from the US-Israel Binational Science Foundation (BSF), Jerusa- Jerusalem Symposia on Quantum Chemistry and Biochem-
lem, Israel. The Fritz Haber Research Center is supported by the istry 19, 373 (Reidel, Dordrecht, 1986).
Minerva Gesellschaft fur die Forsehung, Munich, FRG. [27] R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127,223 (1986).

[28] E. Pines, D. Huppert and N. Agmon, J. Chem. Phys. 88, 5620
(1988).

References [29] W. Nadler and K. Schulten, J. Chem. Phys. 84, 4015 (1986).

[1] H. A. Kramers, Physica 7, 284 (1940); S. Chandrasekhar, Rev.
Mod. Phys. 1, 1 (1943). Presented at the Discussion Meeting of the E 7496

[2] A. Nitzan, Adv. Chem. Phys. 70, 489 (1988). Deutsche Bunsen-Gesellschaft ffir Physi-
[3] B. J. Berne, M. Borkovec, and J. E. Straub, J. Phys. Chem. kalische Chemic "Rate Processes in Dis-

92, 3711 (1988). sipative Systems: 50 Years after Kramers"
[4] B. Bagchi, Int. Rev. Phys. Chem. 6,1 (1987). in Tutzing, September 10-13, 1990



286 F. T. Arecchi: Rate Processes in Low Dimensional Chaotic Systems etc.

Rate Processes in Low Dimensional Chaotic Systems with Many Attractors
F. T. Arecchi

Phys. Dept. of the University and Istituto Nazionale di Ottica. Firent7e

Chaotic Dynamics / Nonequilibrium Phenomena / Nonlinear Phenomena

Kramers' paper and its successive elaborations up to the last decade have considered the transition-rate
between two stable situations. In the language of system dynamics, we say that the process consists in the
transition between the basins of attraction of two fixed point attractors. - Here I present four situations
of transitions in non equilibrium systems explored experimentally, and which await a formal treatment
in terms of a generalized Kramers transition rate theory.

I) Since 1967, with reference to Q-switched lasers, we have studied the decay out of an unstAble state,
exploring the passage time statistics in its first and higher order moments.
II) In the '80s we have been exploring situations of low dimensional chaos where two or mort, strange
attractors coexist. The jumps from one to another are either noise induced jumps, or they are induced by
a change in a control parameter which lowers the energy barrier separating the two attractors (crises).
III) Investigating a dynamics with competing unstable points we have shown evidence of Shil'nikov chaos.
The identification is done in terms of the iteration map of the successive return times to a given surface
of section. This may be considered as an extension of the passage time method to the case of multiple
passages.
IV) We have given experimental evidence of "chaotic itinerancy", that is, of jump processes self triggered
by the same dynamics, So far, the corresponding understanding is based only on numerical simulations,
Since chaotic itinerancy has been observed in optical systems displaying space-time chaos, a short survey
of these phenomena is presented for sake of completeness.

1, Introduction passages. Shil'nikov chaos and" its representation in terms

At variance with the other contributions of this Discus- of time maps is discussed in Sec. 4.
sion meeting, I do not present the calculations for an already IV) Sec. 6 is devoted to describe the recent experimental
established rate process, but rather I introduce novel rate evidence of "chaotic itinerancy", that is, .of jump processes
processes whose theoretical understanding required a gen- self triggered by the same dynamics, without external noise
eralization of Kramers' approach. or parameter modulation. So far, the corresponding theo-

Precisely I present four situations of transitions in non- retical understanding is based only on numerical simula-
equilibrium systems which have been explored experimen- tions. Sinc'e chaotic itinerancy has been observed in optical
tally by my research group, and which await a formal treat- system, displaying space-time chaos, a short survey of these
ment in terms of a generalized Kramers transition rate the- phenomena is presented for sake of completeness in Sec. 5.
ory. What is common to cases II to IV, is that they refer to

I) Since 1967, with reference to Q-switched lasers, we have cases of deterministic chaos in dissipative systems, charac-
studied the decay out of an unstable state, exploring the terized by two features, namely, i) the dynamics is low-di-
passage time statistics in its first and higher order moments. mensional, that is, the corresponding attractors can be em-
This investigation is reviewed in Sec. 2. bedded in low-dimensional (d < 10) phase space and ii) many

II) In the '80s we have been exploring situations of low attractors coexist for the same parameter values.
dimensional chaos where two or more strange attractors Feature i) means that the system can be modelled by a
coexist. The jumps from one to another are either noise small number of non-linearly coupled O.D.E,'s (ordinary
induced jumps, or they are induced by a change in a control differential equations). Even if the physics refers to a dis-
parameter which lowers the energy barrier separating the tributed field ruled by P.D.E.'s (partial differential equa-
two attractors (crises). tions), that means that the relevant motion can be confined

In both cases the power spectrum has a low freuency part to low-dimensional manifolds. Feature ii) means that re-
(jump spectrum) independent from the chaotic spectrum peated preparations of the physical system do not lead to
which accounts for the decay of correlations within a single the same attractor, since in general an ensemble of initial
attractor. This is discussed in See. 3.. conditions is spread over many basins of attraction. As said

III) Investigating a dynamics with competing unstable in Sec 3, even in the evolution from a fixed initial condition,
points we have shown evidence of homoclinic and hetero- the trajectory can belong successively to different attractors,
clinic orbits and Shil'nikov chaos. The identification is done either because activation by external noise has violated the
in terms of the iteration map of the successive returne times uniqueness theorem, allow ing a jump across a basin bound-
to a given surface of section. This may be considered as an ary, or because external modulation of a control parameter
extension of the passage time method the case of multiple has induced a ' crisis." 1hereb0 the attractor hits the basin

Ber. Bunsenges. Phys. Che n 95 { 1991j A'o. 3 & I 'CH I erlagsgesellsdhaft mbHI. JV-6940 Weiheun. 1991 O005-9021.'9.,'0303-0286 S 3.50±+ 25/0
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boundary and can go across it without an activation (this Theassumption of deterministic evolution out of a spread
would be the equivalent of barrier-less transitions); initial state neglected the role of fluctuations along the build

A new phenomenon, recently introduced theoretically and up with respect to the initial ones. The relation between the
just observed is that of "chaotic itinerancy". It consists in two types of noise were explored in a series of papers by
the successiveMsit of different slow manifolds with a chaotic Suzuki, summarized at the XVII Solvay Conference on
dynamics within each of them, persisting for a time much Physics [Ila]. In that conference, a remark by P. Martin
longer than the-transition time from one to another. This to Arecchi [1lb] reopened the question of the nature .of
stems form the interplay of a rather small number of degrees these large fluctuations.
of freedom, without any added noise. Upon Martin's remark a quest for a discrimination be-

In conclusion this communication addresses the question tween fluctuations on the initial condition and those along
whether-a suitable extension of Kramers' theory might yield the path led a new observation method, based on the sta-
thetransition rates from one to another slow manifold and tistics of passage times at a given threshold [3,4]. From this
the persistence time within each of them. method it resulted clearly that, when a laser is suddenly

Due to the novelty of the phenomena here reported and switched far above threshold, the fluctuations are mainly
to the lack of a formalized, Kramers type, rate treatment, due to the initial spread, as already guessed in Ref. [2]. This
the presentation is rather sketchy and introductory. I sin- method of passage time provided an important difference
cerely hope that it will stimulate the theoretical investiga- between gas and dye lasers, since in the latter case it per-
tion. mitted detection of the role of pump fluctuations as "noise

along the path" [6].
2. Rate Processes in Optical Non-equilibrium Systems Both the He -Ne and the dye laser have in common a

In Sec. XI of their comprehensive review on "Reaction population decay rate large with respect to the photon decay
rate theory", Hiinggi. Talkner and Borkovec [1] devote a rate (so called class-A lasers [5]). Hence the population ad-
short remark to rate theory in non-equilibrium systems, and iabatically follows the intensity changes, with a consequent
particularly to mean first passage time in the decay of ini- reduction of inversion as the cavity losses are lowered. This
tially unstable states. Motivated by my old time acquain- adiabatic following forbids any overshoot in the laser inten-
tance with such a problem [2], in the late seventies I ad- sity. Indced,-Q-switching-in-class-A lasers is characterized
dressed the problem of rate processes in terms of first pas- by an intensity monotonically increasing up to an asymp-
sage time statistics, extending the acquisition not only to totic value. In contrast, when the population decay is lower
the mean, but also to higher order moments [3,4]. Such a than the photon decay (class-B lasers) the initially large pop-
tool was applied by my group to electronic nonlinear circuits ulation storage provides a large intensity pulse by stimulated
[4] and later used to explore transitions in class A lasers emission, and only later the population feels the slower de-
[5] by Roy et al. [6] and then by Mecozzi et al to semi- pletion channels (either spontaneous emission in ruby and
conductor lasers [7] and by my group to CO2 lasers [8]. In semiconductors, or collisional deexcitations in CO2). This
these two latter cases, dealing with class B lasers, the cor- explains why, after a sudden loss reduction, class-B lasers
responding dynamics was no longer simply modeled as a release giant intensity pulses well above the asymptotic
one dimensional motion within a potential well. value, whereas class-A lasers do not.

Letme summarize the main results. We generate transient dynamics in a single-mode CO 2
The first observation of a statistical spread in the leading laser by switching an intracavity modulator from absorption

edge of a Q-switched laser pulse was associated with the to transparency in a time shorter than the build up time of
appearence of a large peak in the variance of the transient the giant pulse. We summarize below the main results [8].
photon distribution [2]. This fact was explained in terms of (i) The average buildup time is around 3 ps. The average
an approximately deterministic decay out of macroscopic spread of the St leading front (jitter) is around 0.2 Ps.
unstable state, to be averaged over the statistical distribution (ii) If we consider the time tj necessary to reach a photon
of the initial states. Such behavior was later shown to be number n1 still below the saturation value n,, the laser dy-
peculiar of quenching phenomena in macroscopic systems, namics up to t1 can be taken as linear. In this linear regime,
such a spinodal decomposition in thermodynamic systems a simplified version of pasage time statistics leads to a very
[9]. powerful relation which permits evaluation of the effective

As stressed by Haake [10], the phnomenon is the tran- seeding photon number at the onset of the dynamics in terms
sient counterpart of the stationary fluctuations at the critical of the threshold photon number n, and of the ratio of the
point of a thermodynamic phase transition (or more gen- average i the spread 3t. Our method [8] is self-calibrating,
erally at the bifurcation points in a nonlinear dynamics in the sense that the second moment of the observed statis-
which display the same formal features pf asecond-order tics provides the amplification gain without any previous
phase transition). Precisely, if we call N the number of de- calibration, and the higher-order cumulants provide the er-
grees of freedom of a macroscopic system decaying out of ror bars of the experimental points.
an unstable state, the initial fluctuations are of the order of (iii) We can detect a few initial photons in a laser cavity
1,'N[0(1,'N)], however, in the linear part of the decay they b, linear optical amplification. The reported amplification
ard amplified by 0(N), hence the relative fluctuations are of factors are of the order of 10", but in principle the) could
0(1). be larger. The linearity of the amplification process is pre-
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served: up-to the saturation photon, fdifiber, which is over log,S[
11, decades in.our case. (0)

(iv).While ina class-A laser the photon population reaches
a maximum, and, remainsclamped, to that. value, in a-class- j
B laser ,thephoton-poptlation inversion is practically de-
coupled from-its thermal reservoir, and its evolution dependsonly bn, the coupling with the radiation~field. ",,

3.,Chaoswith*Many AttractorstNoise InducedJumps and 51)0 (Hz) log f
Crises

3a. Noise Induced Jumps and 1/f Spectra Fig. 2

In the-pioneering work on chaos in a single mode laser Experimental power spectra in~the case of two attractors, without
[12] we show that modulating the losses of a class B, ruled noise (dashed line), and with noise (solid line). Notice that this low
by two equations, at a- frequency close to a nonlinear res- frequency range is two decades below the high frequency spectra

of Fig. 1. The solid spectrum (noise-activated) shows a power law
onance intrinsic of the system (around 60 kHz) chaos is component from 20 to 40 dB above the dashed (jump free) spectrum
reached via a sub-harmonic route.

Furthermore at f = 63.85 kHz a new feature appears,
namely the coexistence of two independent stable attractors, as diffusion in disordered systems, have shown a 11f behav-
one of period 4 (f/4) and the other of period 3 (#t3) (Fig. 1). ior [13]. Thus, hyperchaos here introduced is a random-
This bistable situation has nothing to do with the common random walk in phase space, where in fact one of the two
optical bistability where to dc output amplitude values ap- sources of complex behavior is due to the fractal structure
.pear fora single dc driving amplitude. We call this coexis- arising from deterministic dynamics.
tence of two attractors"generalized bistability". More gen- To evaluate the impact of the following arguments, we
erally, 1/f type low-frequency spectra, that is, power spectra premise some historical remarks on 1/f spectra in nonlinear
asf-'(o = 0.6-1.2), appear when the following conditions dynamics.
are fulfilled: (i) There are at least two -basins of attraction; Some years ago we discovered [14] that in a nonlinear
(ii) the attractors have become strange and any random dynamical system with more than one attractor, introduc-
noise (always present in a macroscopic system) acts as a tion of random noise induces a hopping between different
bridge, triggering jumps between them. These jumps have basins of attraction, giving rise to a low frequency spectral
thef feature. In the region of bistability (see Fig. 1) we have divergence, resembling the 1/f noise well known in many
,increased the modulation amplitude up to the point where areas of physics. Such a discovery was confirmed -by the
the two attractors have become strange. Fig. 2 shows the laser experiment implying two coexisting attractors already
sudden increase in the low-frequency spectrum. The diver- reported and later the effect was observed in other areas as
gent part has a power-law behaviorf - with a = 0.6. e.g., Josephson tuhneljunctions [15].

Let us show how addition of random noise in a nonlinear The effect was questioned with two objections:
dynamical system with more than one attractor may lead a) a noise induced jump across a boundary leads to a
to 1/f spectra, provided that the basin boundary be fractal. telegraph signal, hence to a single Lorentzian spectrum
This shows that combining the features leading to deter- [16a].
ministic chaos with a random noise is somewhat equivalent b) a computer experiment yielded a power law only over
to a double randomness and we call "hyperchaos" such a a'limited spectral range [16b].
situation. Indeed random-random walks in ordinary space, The questions were answered [16c] with a statement of

the empirical conditions under which the 11f spectra ap-
A A peared, namely:

(i) coexistence of a least two attractors,

2. (ii) presence of noise,
(iii) some "strangeness" in the attractors.

1n As a matter of fact this third condition was rather vague.
To make it more precise, two theoretical models were ex-

tl ft plored, namely, a one dimensional cubic iteration map with

Fig. I noise [17] and a forced-Duffing equation with noise [18].
Modulated CO2 laser: power spectra and phase portrait (t, i) where The numerical evaluation of Ref. [18] showed that for
i is the photon number.f = 63.85 kHz. Experimental evidence of some control parameters the boundary between basins of
generalized multistability (coexistence of two independent attrat.- attraction was an intricated set of points, through which it
tors). The power spectrum shows that those attractors correspond was impossible to draw a simple line. In such cases the noise
tof/3 andf/4 subharmonic bifurcations, respectively; in phase space was most effective in yielding low frequency spectra 1/f-like.
we see independent loop. The multiple winding (corresponding to
period 3 and 4, respectively) is masked by the particular projection. On the other hand a fundamental logical approach to the

l/f problem was based on the composition of a large number
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,of Lorentzians (or-elementary Markov, processes with ex- dom number y uniformly -distributed between 0 and 1. If
-ponential decay) whose weights are log-normally distributed y < (1/2) v"iJ,.then at the next time the point goes to iA + 1

, [19], thusfulfilling the-relation onattractor A; if y > (1/2)" ('0, then the point jumps in-
2 stantaneously to site iB and at the next time it goes to il - 1

. - J 2p(y)dy- cost I -1 (1) owattractor B.
o + , to By. .easuringthe position coordinate, taking the-Fourier

transform and squaringit, we can build the power-spectra,
provided p(y) - 1/y, and for the frequency range that is,-the transforms of the position correlation-functions.
YJ $ ,o 1, Y2. Thus,,this suggested that the'boundarystruc -

ture was the real responsible for a large number of decay 0 4b 
/-

constants (possibly log-normally distributed). F = 4
In the meantime, the fractal, structure ofra basin boundary -1o

for- chaotic dynamics was investigated [20]. This means the
following. As the phase point~wanders within one basin of -40
attraction, if-we draw a- sphere around the point defining its
distance from the other basin of attraction, the radii of these
spheres are distributed with all scale lengths, according to -,

the self similar structure of the fractal boundary.
Based on the above considerations, we have built an el- -60

ementary model for the motion of the phase point within~a
fractal basin boundary under the presence of random noise __ _ _

[21]. We model the boundary region of two basins of at- ,00
traction A and'B as two adjacent one-dimensional lattices
of sites. Suppose we stat from site I. At each-discrete time -0 d0

step, if I belongs to A (I = iA) it moves one step forward on IF =14
the same lattice LIA -- (1A, + 1)] and if it belongs to B it goes - __

one step beckward [IN -- (i - 1)]. In the absence of noise,
one the motion has started on one basin, it will remain on _ _

it forever. In the presence of noise, at each time step there .- ,I
is a finite,pt'?bability of a "cross" jump at the same lattice-,
site, from stripe A to B: iA - iB. -110

We call L the maximum size of the boundary region (dis-
iance between the two lattices A, B) and I < L any of the
possible sizes of the fractalset. At each time step, the prob-
abilities of permanence and jump are respectively

0 100 1000

PAA P BB - I,/L (2) Fig. 3

PAB POA = I - IUL Deterministic motion on two one dimensional lattices with random
mutual separations and each site, at with possible noise induced

To build a self-similar structure we allow kh to sacale as l., jumps. Power spectra (vertical) vs. frequency (horizontal) in log-log
scale. Wavy lines: measured spectra, straight lines: best fits, whoseL=(1/2) ( 4)l where V(ik) is a natural number sorted ran- slopes a are 1.7 (F = 4), and .1 (F" = 14)

domly for each site (i = - co to oo, k = A, B). To deal with
a real numerical experiment we consider finite sequences of
N sites (e.g., N = 103) and we truncate the fractality by In Fig. 3 we show two power spectra for F = 4, and 14
imposing 0:< V(ik) < F. Here, F is a finite iteger denoting respectively. In fact, we have measured spectra for all integer
,theo maximum partitioning (1/2) - , that is, the ultimate res- values of Fbetween 4 and 14, but we just report two samples
olu, )n of the measuring device in appreacing the fractal over slightly more than three frequency decades. The se-
structure of our set. With all this in mind, for each evolution quence shows that, as the fractality increases, the slope of
we extract a double sequence of N integers randomly dis- the log-log plot goes from about 2 (single Lorentzian) to
tributed between 0 and F- 1, and denote each site ik by:the about 1 (lIf spectrum). The Lorentzian (a = 2) of the ran-
corresponding number V(ik). This means that we have at- dom telegraph model is easily recovered for F 1 thus
tributed to each site an "area of respect", that is, a specific showing that noise induced jumps across a regular line
separation I,t froim the other attractor, with I, depending on boundary fulfill the intuitive expectation of a single decay
V(i) as shown above. We start, e.g. on the basin A from iA rate. An analogy with the random-random walk [13] is eas-
= N2. ily drawn. Indeed our motion is bound with an r.m.s. de-
At-this step, to account for a suitable noise yielding the viation going from about I t to llogtl' ab the fractality F

permanence and jump probabilities (2), we generate a ran- increases from 4 to 14, according to Sinai.
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3b) Spontaneous Inter-attractor Transitions (Crises) parameter in order to isolate a non zero set of initial con-

In nonlinear dynamics it is generally ,possible to have ditions such that. ,.. 'ajectories departing from there ap-

collisions between unstable -orbits and' chaotic attractors; proach asymptoti~a.'.#jthe unstable saddle focus and remain

'leading to interior; boundary -and external crises [22,23]. at a finite distance from all other fixed points. In such' a

The former one preserves the chaotic attractor enlarging case, under the Shil'nikov condition [27]

monotonically its basin, the second one destroys the attrac-
tor by- sweeping off its basin of attraction, while the latter Ia/vI < 1 (3)

one enlarges discontinuously its basin of attraction. The-
presence of those different crises in the system depend on the motion becomes chaotic.

the amount ofidissipation [22]. Such crises have been ob- A single orbit of this type spiralling around an unstable

served experimentally in a variety of systems [24]. Boundary saddle focus S is qualitatively sketched in Fig. 4.

crises in the modulated laser have been observed by Glo- With the understanding that the only, interesting dynam-

rieux et al. [25]. ical features occur around point S we obtain a global de-

Working on the modulated CO2 laser [12] we have given scription by just studying the linearized dynamics within a

experimental evidence of the three types of crises which are small box around S (Fig. 5).
due to collisions among strange attractors and unstable pe-
riodic orbits created-th saddle node bifurcations [26]. These
collisions are also responsible for the existence of isles that / -
can be reached only by hard mode excitation and for peri-
odic windows that separate different regions.

Furthermore, from the shape and size of the multisiable i\

region as a function of the modulation amplitude, in, we .t0

draw a connection between the amount of attractor overlap Z Ii
in parameter space and the volume contraction rate in phase I

space, that is, the dissipativity of a dynamical system. I

4. Shil'nikov Chaos: How to Characterize Homoclinic and I
Heteroclinic Behavior byReturn Time Maps
Shil'nikov,dynamics (27] corresponds to orbits asymp- t II,

.totic to an unstable saddle focus in at least a 3D space. /
-Limiting to a 3D space let us call a ± icy the pair ofcomplex Z "
eigenvalues on the stable (a < 0) manifold and y > 0 the I
eigenvalue in the unstable direction orthogonal to the plane.

/X
/ zo

Y XO =l
Fig. 5
Construction of unit box leading to the unidimensional mop (6)
through the linearization of the flow around the saddle focus

In Fig. 5, we orient the three axes along the eigenvectors
with x -y coinciding with the stable plane and z being the
expanding direction. We take the n plane (vertical plane of
equation x = I containing a face of the cube) as the Poin,'ar6

S ai section and we calculate the return map for the coordinate
z. Starting at t = 0 at z = 0 on x = 1 0y is irrelevant for

Y the following considerations) the phase point leaves the up-
per cube side z = I at time T such that

Fig. 4
Schematic representation of a trajectory in Shil'nikov dynamics 1 = zo e^,

Let us consider a dynamics where all fixed points are from which it results
unstable, within a given range of -ontrol parameters. We
call such situation a regime of competing instabilities [28]. = - _logzo. (4)
In physical implementations we can adjust [29] the control 7
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The horizontal coordinate x evolves over the same time as repositioning the initial condition in an experiment on a
single decay. Here the repetition is automatically provided

x(r) =.e - "' cosYr (5) by the contracting motion asymptotic to the stable manifold.
As a consequence, superposed upon the deterministic dy-

since theinitial condition is x(O) = 1. Neglecting a-phase namics (either regular or chaotic), the high sensitivity
shift due to the y position, we constrain the motion external (Eq. (8)) may provide a broadening of the T maps not de-
to the-box to a rigid translition (see dashed trajectories).

10 /A
(a)

besides an offset c added at each turn and which may be8
considered as a second control parameter, the first one being
the ratio Io/7i. Using relation (4) and writing,; as z,+, and ,

z0 as z,, we obtain the return map 6 .

Zn+I= zlyCos(- logZn) + a (6) Vi
4

which describes the homoclinic orbits.
The -map (6), even though representing a sensible global 2
description, may provide a poor experimental criterion
whenever the z coordinates on the 7c plane are clustered in
a small region. A lack of experimental sensitivity appears in 0 . "-
experimental return maps which do not display the nice 0 2 4 -6 8 1 0
features that Eq. (6) provides for the theory. Such was the
case for the Belouzov Zabotinski reaction [3]. On the other 1 0
hand, the above behavior appears rather universal whenever
one can isolate a spiral type orbit, as it occurs in Lorenz or (b)
Roessler chaos [31]. 8

In dealing with 'a quantum optical experiment we intro-
duced a more sensitive dynamical indicator [32,33]. Based ,
on the logarithmic relation between position z on the n plane + 6
and times r that the orbits take to return to that plane, and ,
assuming that the relevant time is that spent irn'he box of:'
Fig. 5, map (6) transforms via relation (4) into a return map 4
for orbital times. We rescale r as T = Yr = -logz and
obtain

2
T+= -In [exp(- A/yT.) cos(o/yT) + a] (7)

= - Jn [ 0~ ( T ) '% ] .0 ....0

Comparison of Eqs. (6) and (7) shows the enhanced sehsi- 0 2 4 6 8 1 0
tivity to fluctuations of the T map with respect to the z map.
Indeed, suppose that the offset c from homoclinicity is af- 6
fected by a small amount of noise. The sensitivies of the two
maps to such a noise are given, respectively, by Oz/ft = I()
and

3T13c = [0 (T) + ]. (8)

This sensitivity factor acts as a level arm whenever O(T) + a
becomes very small. Note the following: (1) This is not de- 5
terministic chaos; in fact, large fluctuations can be expected 4 5
even for a regular dynamics, implying a fixed point T*, (2) rn
It is not associated with the homoclinicity condition a = 0; Fig. 6

nfact, for finite a there may be a T* such that 4(T*) + as 0. Numerical iteration maps Shil'nikov chaos. Parameter values: 0)/y = 13.0, a/y = 0.986, a = 0.01. (a) and (b), T maps without and
Since a homoclinic orbit is the dynamic counterpart of with noise 66 = 10 2, respectively. (c) Stable fixed point of the

repeated decays out of an unstable state, the result is like regular dynamics, broadened by a noise &6 10 -
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tictable in the Z maps-whenever'noise in the'offset F is pres- X
e'nt.

'Ififact, the model description t = F(x)'of a large system
antterms ofa low-dimensional dynamic variable -xis just, an /2
enseiible-averaged description, and residual fluctuations on
position x must be considered at some initial time, even
though, the successive evolution is accounted for by a de-
terministic law. In our case such a fluctuation is a stochastic
spread'8c on'the offset a of the position z.

As shown in Fig. 6, the same amount of Se in Eqs. (6) and
(7) leaves the z maps unaltered, while it strongly affects the
T maps. If we specialize the map parameters ix, y, wo, and c /
to a regular orbit (fixed points both in z and. T spaces),
'introduction of 8e does not broaden the z point, while the
T point broadens. ' /

For example, the values a/y = 0.98, ande= 0.01 yield 0
one fixed point T* = 5.327, with a sensitivity 8T*/Sc =

182 (Fig. 6 (c)), Note-that the noise effect reported here has
nothing to with additive noise effects on return maps [34]. y
Indeed, the latter effects refer to the scaling behavior near
stationary bifurcations, whereas our data refer to transient Fig. 7Schematic vicw of a trajectory in the phase space when the dynam-
fluctuation enfiancement, and they do not leave a permanent ics is affectcd by all three unstable stationary points,
mark (such'as an orbital shiftor broadening).

Thus, while Shil'nikov chaos is a determin-stic effect de- population inversion, the fast polarization being adiabati-
scribed on average by the backbone of the z or T maps, the cally eliminated from-the complete set of Maxwell-Bloch
superposed thickening is a noise effect peculiar to T maps equations. Thus, the presence of feedback introduces a third
undetectable in z maps. This new effect is a specific indicator degree of freedom. Withsuitable normalizations such a sys-
of intrinsic fluctuations, and it permits a demarcation line tem is described by three first-order differential equations
to be drawn between a real-life experiment and a model for the laser intensity x(t), the population inversion y(t), and
simulation, from which this second feature is absent. the modulation voltage z(t). Keeping all other parameters

In order to explore the regular behavior of these closed fixed, the dynamics is controlled by varying a bias voltage
orbits, we take the fixed point of map (7). B in the feedback, loop. In Fig. 7 we present a schematic

view of the trajectory in the three-dimensional space, ob-
T* = In[exp(-)./yT*) cos(col7T*) + c]. '(9) tained by a linear stability analysis of the motion around

the stationary points, and qualitative connections between
Eq. (9) gives a stable fixed point, provided Shirnikov con- the linear manifolds (dashed lines).
dition is violated. Solving transcendental Eq. (9)and plotting From an experimental point of view we are able to vi-
the Poincar frequency 1/t versus the control parameter , sualize (x - z) phase-space projections, obtained by feeding
yields two different items, namely onto a scope the photodetector signal proportional to the

i) a staircase region implying histeresis cycles laser output intensity x(t) and the feedback voltage z(t). This
ii) a logarithmic divergence for small c phase-space projection consists of closed orbits visiting suc-

After having summarized the main features of Shil'nikov cessively the neighborhoods of the three unstable stationary
chaos we describe the ccrresponding experiments. As a mat- points 0, 1, and 2.
ter of fact, things have gone in the reverse order: we first The local chaos around point 1, established at the end of
found evidence of spiral type orbits, including large time a subharmonic sequence, has been characterized by stan-
fluctuations, or regular periods scaling with the control pa- dard methods as power spectra and correlation dimension
rameter as i), ii) above; then we looked in the theoretical measurements [35]. The competition of the three instabili-
literature and found that, using the orbital period as a dy- ties in controlling the global features of the motion was
namical indicator more sensitive than Poincar6 position, we described in Ref. [29]. There I ojl was adjusted major then
could nicely describe what had been previously treated only one showing regular behavior and experimental evidence of
at a qualitative level, in terms of a symbolic dynamics coding items i) and ii) abo-e. Here we adjust the control parameters
the number of spirals around the saddle focus [30]. in order to have a dominance of the saddle focus, so that

Our experimental setup consists of a single mode CO2  the motion consits of a quasi homoclinic orbit asymptotic
laser with an intracavity clectro-optic modulator. A signal to it.
proportional to the laser output intensity is sent back to the In Fig. 8 we report experimental plots of the laser intensity
electro-optic modulator [35]. Single mode C0 2 lasers have vs. time for two slightly different conditions. Fig. 8b) shows
a dynamic behavior described by tvo coupled differential clear evidence of a homoclinit orbit in the tvvo long tran-
equations, one for the field amplitude and the order fur the bientb, N hiLh pro vide a lenbthy permanence in a phase space
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region of almost, constant intensity. This appears, more (ATo)/(To) - 14%, (AT 2)/(T2) - 80%,
clearlyinthe c6rresponding phase space projections (Fig. 9
and b)). For comparisonwe give in Fig. 9c) a photographic (ATo)/(To) 40%, (AT2)/(T2) 250%.
exposure (over I s) of 30000 orbits~as that of Fig. 9a), to
show the stability of shape. The comparison shows that point 0 introduces a pertur-

bation around 14% withrespect to pure homoclinicity, that
-. ,- ,- is, the orbital regularity is ruled mainly by point 2. Thus a

± .theoretical approach to our experiment in terms of homo-
I - - - clinic chaos appears justified.

We measure-the time spacings by setting a threshold cir--" --- , ~ ... .. cuit near the top of the largest peak of the intensity signal.

"3_..

7,L
time- 20 gs/div.

Fig ,8 , S30-

r I__J I Ax~ . I .- . ,,tt~~ L. I_ L 1 -J

time- 0.1 ins/div,

'Fig. 8

Time plots of the laser intensity in the regime of Shil'nikov chaos. 2 0 30 40 50
a) and b) refer to two different gains of the feedback loop, b) shows
two long transients corresponding to a large number of small spirals "n ( it S)
atound the saddle focus

Before we discuss comparison with Shil'nikov theory, a b)
crucial question arises: how much of the spread in the return
times has to be attributed to point 2 or 0? Indeed, we have T 2 3
quasi-heteroclinic orbits visiting the surroundings of the two n2
unstable points 2 and 0. But in our experimental situation
the dynamics can be assimilated to a quasi-homoclinic orbit
around point 2, which is thus mainly responsible for the 1
spread in return times. This is easily proved my measuring 10 gs
the spread T in the residence times To around 0 (zero inten-
sity stripes) and the spread T2 in the residence times T2  Fig. 10
around 2 (complementary stripes, such that To + T2 is the Experimental iteration maps of the return times, a) refers to Fig 8a),
total orbital time). In Fig. 8, which shows typical time se- b) shows the maps corresponding to regular periodic situations,

namely, 1) an electronic oscillator, 2) the laser in a regular periodic
quences used to build the two averaged relative spreads are regime and 3) the laser just at the onset of the instability but still
approximately with a regular period

feeabmck voLtage feedcLbck voltage c') feecback votct.ge

a) b)I

4)C)

Fig. 9
Phase space projections A - (laser intcnsity- fcedb.,k %ultag)..) and b) Arc single orbits obtained b) a digitizcr, rcferng tu the zamc
parameters of Fig. 8a) and b), respectively. c) is the superposition of 30000 orbits of type a)



294 F. T. Arecchi:.Rate Processes in Low Dimensional Chaotic Systems etc.

A:time-to-amplitude converted (TAC) yields the sequence T affairs in quantum"optics. Since all coherent phenomena
of successive time spacings, which is then. classified as a take'place in a cavity mainly extended in a z-direction (as
statistical distribution by a multichannel.pulse height ana- e.g. the Fabry-Perot cavity), we expand the field e(r;t), which
'lyser, or'stored inca digitizer, so that correlation functions obeys the wave equation,
or iteration imaps can be sorted out.

The statistical distribution 'of return times is a broad fea- -2 e = -p (10)
tureless curve which does not offer curves-on the ordering
of T. On the contrary, the iteration map (T+1 'vs. T) displays (wher p(r, t) is the indudcedpolarization), as
a regular structure (Fig. 10a)). To check whether we are in
the presence of one-dimensional (I D) iteration map, and the e(rt) = E(x,yz,t) e-i(w' k). (11)
remaining thickness is due to the observation technique, or
the map is more that 1 D, we report in Fig. 10b) the iteration If the longitudinal variations are mainly accounted for by
maps corresponding to three regular situations. the plane wave, then we can take the envelope E as slowly

In the absence of fluctuations in T they should be point- varying int and z with respect to the variation rates co and
like (the image of a stable fixed point). In fact 1) corresponds k in the plane wave exponential. Furthermore we ell P the
to an electronic oscillator and it'just' shows the resolution projection of p on the plane wave. By neglecting second
of the TAC, 2) corresponds to the laser in a regular periodic
regimeaway from the Shil'nikov instability-'and 3) corre-
sponds to the laser on the verge of the instability but still ) ' l
with a regular period. In this last case, the fluctuation as-
sociated with the nearby transition shows that, even without Z
chaos in the return time, the close approach to an instability
point introduces a fluctuation enhancement, which has no
theoretical counterpart- inthe current treatment of deter-
ministic chaos. To deal with this broadening, the dynamical
equations should include a statistical spread in the injection 0,
coordinate at the Poincar6 section near the saddle focus, to
account for the macroscopic character of the experimental
system. As it was shown in Refs. [2,3], even though this I [
spread has no relevance on the average dynamics, it con- £L)
tributes a large transient fluctuation whenever the system C1.L W
decays from an unstable point.

5. Space Complexity in Nonlinear Optics
In chemical relations and in fluids it is straightforward to

scale up the system size from small to large cells, thus mak-
ing it possible to explore in many ways the passage from
systems coherent (fully correlated) in space to systems made
up of many uncorrelated, or weakly correlated, domains.

Crucial questions such as; i) the passage from order to L,
chaos within a single domain and ii) possible synchroniza- *'4i) ,_ K
tions of time behaviors at different space domains, have been k______
addressed in the past years, with the general idea in mind
that space-time organization is what makes a large scale
object complex.

Thus far, such an investigation was not possible in the L
optical field, because all coherent optics is based on Schaw-
low-Townes original idea of a drastic mode selection.

Here I show very recent evidence of space-time complexity , " ) . '*+

in optics. The experimental configurations which have made ko (9=o)
possible to fulfill this twenty-year long search appear so b..- 4  _
promising that we can foresee an extensive investigation of E:
space phenomena in optics along the coming decade. Let A k,=
me call this area of investigation "dry hydrodynamics".

Here I anticipate and explain what we are going to see in
the experiments reported in See. 6. To appreciate the role F-pace a) and K-space kb) pictures of the losing mode in the.

of space coupling let me summarize the present status of i) (1 + 0), a) (I + 1), and iii) (I + 2)-dimension.l cases
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order envelope derivatives-it is easy-to approximate the op- keep their dynamical character as in class C laser. Anyway,erator on.E as, <w& have enough equations to see space time chaos.

[2:I-- 2ik(0 +1 ) + ,2 + 0y (12) SINGL HOJ)

as is usually done in the eikonal approximation of wave HoPE,
optics. This further-suggests three relevant physical situa- ___--
tions. --

@ @0 0
5.1. (1-+ 0)-Dimensional Optics CIAo1i c

In such a case there is only a time dependence and no CICLC CHAOS ITINCMRNCIY

space derivatives, that is, .]2 -- 2icod,. Assuming that the
laser cavity is a cylinder of length L, with two mirrors of
radius a at the two ends, the cavity resonance spectrum is
made of discrete lines separated by c/2L in frequency, each
one corresponding to an integer number of half wavelengths
contained in L, plus a crown of quasi-degenerate transverse "l, oMC

modes at the same, longitudinal wavenumber, with their A L-rcgn

propagation vectors separated from each-other by a diffrac- ! /

tion angle A/a (Fig. llb).
This case corresponds to a gain line narrower than the Fig.12

longitudinal frequency separation (so called free spectral- Space-time complexity in optics. Qualitative plots of different be-
haviors observed in laboratory experiments and in numerical so-range) and to aFresnel number lutions of model equations

a2

F- L Equations as (13) have been solved numerically in the
sixties, to explain space variations on a length scale much

of the order of unity, so that the first off axis mode already smaller than L, as seen in regular or erratic mode locking.
escapes out of the mirror. Intuitively F is the ratio between Fig. 12 collects a sequence of possible behaviors as one in-
the geometric angle alL of view of one mirror from the other creases an intensive control parameter (the pump to loss
and the diffractive angle )/a. ratio) for a cavity long enough to provide a high ratio of

In such a case, the resulting ODE replacing the wave PDE gain linewidth to free spectral range, or alternatively, as one
increases an extensive parameter, that is, the latter ratio forh a s to be c o u p led to th e m a tte r e q u a tio n s g iv in g th e e v o - a i e u p t -o s a i . S n e t e f e p c r l r n e i

lution of P. In the simple case of a cavity mode resonant aied pum-tlossnrasin c the ree petr angenis
with the atomic line, we obtain the so called Maxwell-Bloch given by c/2L, increasing the extensive parameter amounts
equations. to increasing the c Iity length L.

A comprehensive review of experiment and theory for The circled numbers I to 5 denote the transition points.
these single-domain, (1 + 0)-dimensional systems is given in Threshold n. 1 is the usual laser threshold, whereby un-
the book cited in Ref. 5. covering the period 1982-1987 correlated spontaneous emission selforganizes into single
over which these space invariant instabilities have been stud- mode coherent laser action. Mathematically it is a pitchfork
ied. bifurcation, with critical divergence of the fluctuation am-

plitude and correlation time (critical slowing down). These
transition phenomena have been experimentally demon-

5.2. (1 + l)-Dimensional Optics strated in the middle sixties in a series of experiments re-
Here, we have a cavity thin enough to reject off axis ported by me at the 1978 Solvay Conference [l1b].

modes, but fed by a gain line wide enough to overlap many In order to consider space variations, one must couple
longitudinal modes. The superposition of many longitudinal Eq. (13) with the matter equations. This was done by a mode
modes means that one must retain the z gradient. Thus the expansion of Eq. (13), and a second threshold, n.2, which is
wave equation reduces to a Hopf bifurcation toward an oscillatory regime, was intro-

duced [36].
(3, +ca.) E = GP (13) A third threshold marks the onset of deterministic chaos

in a single mode laser. In fact' it is a cascade of bifurcations
where G is a scaled coupling constant. depending on the specific route to chaos, which is influenced

Having a PDE, any mode expansion with reasonable by possible laboratory perturbations, as modulations or
wavenumber cut ois provides a large number of coupled feedback. The isomorphism of the single mode laser equa-
ODE's, thus it is immaterial A hether P and N are adiabat- tions Nith Lorenz equations %Nas first pointed out by Haken
ically eliminated, as in class A and B lasers, or Nhether they [37]. After that, a large amount of experimental and theo-
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retical investigation has been devoted to-chaos in a single On the other hand, important considerations have been
mode laser. developed for the complex Ginzburg-Landau equation

Recent consideration of a space extended optical system (CGL) [41]. This can be written as
[38] by a model made up of Eq. (13) plu's material equations
has shown evidence of a further behavior, called "chaotic , t = (a,+ i5 2) V

2U -. U - (1 - i) I U 12 U. (15)
itinerancy". It consits in the jump.from one slow manifold
toanother, i.e., from one quasi-attractor to another. At any The CGL includes NLS (for a, = 0) the chemical reaction-
time, a single mode with a chaotic behavior is present, but diffusion equation (for OC2 = 0) and the single mode laser
after a while it is replaced by another mode, and so on. equation (for al = OC2 = 0). Otsuka and Ikeda [41] used a
Alternatively, in Sec., 6 we will show experimental evidence discretized version of CGL on N = 5 sites with a space
of-a non chaotic, but periodic alternation of modes, sche- coupling which mimics the second derivative i.e.:
matized in the lower part of Fig. 12. The main indicator of 2

chaotic itinerancy is that, while a local measurement pro- U U 1 + uj.j - 2u, (i = 1,...N)
vides a chaotic signal, measurement of the space correlations
provides a highly correlated signal. and give solutions for p = 1, cc = c2 = 0.1, and/f increasint

Above the threshold n.5 we enter a new regime, called for 10 to 30.
spatio-temporal chaos (STC) where a large number of modes For increasing / the system displays a variety of dynam-
coexist. This regime has been characterized on very general ical behaviors as shown in Fig. 12.
grounds by Hohenberg and Shraiman [39]. STC is char-
acterized by some statistical features observed in the exper- 6. Chaotic Itinerancy in Optics [42]
iment reported in'Sec. 6. Such features however play no role In this Section I report the first experimental evidence of
for the scope of this paper and will not, be covered here. (1 + 2)-dimensional physics in an extended optical medium.

Precisely, we seed ring cavity with a photorefractive gain

5.3. (1 + 2)-Dimensional Optics medium pumped by an Argon laser and study the time and

As shown in Fig. 1I iii), let us consider a gain line allowing space features of the generated field. By varying the size of
As sione lonFg.iudial moe but tde a gainline anlowig the cavity pupil, we control the number of transverse modes.fo#'a single longitudinal mode, but take a Fresnel number which can oscillate. We report two different regimes, namely

high enough to'allow for many transverse modes. wihcnoclae erpr w ifrn eienml
high eough tohallowefom transverse oordindeehrespect to one of a low dimensional chaos, where a single mode at a
We rescale the transverse coordinates x,y with udina time is oscillating, and a small number of modes alternates

the cross cavity size , and the time t to the longitudinal in a fashion with displays close similarities and one of STC
photon lifetime L/(cT), where Tis the mirror transmittivity, where many modes oscillate simultaneously yielding a very
The new variables are small transverse correlation length and spectral fluctuations

x' = x/a, y' = y a with Gaussian statistics.
The experimental set up, consits of a ring cavity with

= t photorefractive gain. The gain medium is a BSO (Bismuth
L/cT" Silicon Oxide) crystal to which a dc electric field is applied.

The crystal is pumped by a CW Argon laser.

Furthermore we neglect the longitudinal gradient. Then the The Fresnel number of the cavity is controlled by a var-
iable aperture. F can be varied in the range from 0 to 100wave equation reduces to approximately. This corresponds roughly to the variation

(0,- i7f) E = GP (14) of the number of transverse modes that can oscillate. Themechanical and thermal stability are ensured on time inter-

where V2' is the transverse Laplacian and vals longer those of the measurements (half an hour).
Fig. 13 shows the transverse (x,y) intensity pattern re-

corded by the video camera (left) and its spatial autocor-
= rFTrelation function (right). For low F (F = 5) one single mode
4iFT' "at a time oscillates and the wavefront is wholly correlated,

indeed the correlation length is of the same order as the
As in-the (1 + 1) case, Eq. (14) must be coupled with the cross size D of the beam (Fig. 13a). For high F (F = 70)
material equation. If P has a fast relaxation toward a local many modes oscillate simultaneously, yielding a speckle-like
equilibrium with the field, and if we expand its dependence pattern (Fig. 13c) whose correlation length is very small
to the lowest orders, we have a relation as ( /D < 0.1). The correlation test is crucial, otherwise one

might suppose that the intensity pattern at left refers to a
P = aE-bIEI2 E. pure mode with a large mode number. Between these two

asymptotic limits, we have a smooth variation of the ratio
Introducing this into Eq. (14), one has a nonlinear Schro- 'ZID, with intermediate situations as shown in Fig. 13b.
dinger equation (NLS) which has been recently considered The low F limit corresponds to a periodic, alternation of
in many theoretical investigations [40]. a few modes of the diffraction limited propagation followed
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At. the minimum Fresnel number for which some signal
is observed (F around 2) still 4-different modes oscillate one
at a time, followed by a dark interval, in a very regular
periodic sequence. We call such a behavior "periodic alter-
nation". Increasing the pump intensity, the frequency of the
alternation increases but it remains regular. For a slight
increase of F above 5 the regularity is lost, that is, the du-OR 3 ration of each mode is no longer repeatable. This is an ex-
perimental evidence of "chaotic itinerancy".

(a)

TIME (, )

0 C-

04

Z 2

Fig. 13 (b
Intensity distribution on the wavefront (left) and space autocorre- '
lation function (right) for increasing Fresnel number, .. i l  _

a) F = 5, one single modeatatmispenrtobtwn
coherence length and frame size D is [D 1 -

b) F = 20, /D 0.25 7c) F = 70, 1D I

0 400 80 1200 :1600

by a dark period. The radial quantum number is always 0 Fi.1

Fig. t1e 2zmta unu ubrcagsfo i,

and he zimthalquatumnumbr cangs frm j= 0 Time records of the local intensity (samples collected at 10 Hz rate)
to q around 10. (From now on, we identify the modes by at F = 8
their azimuthal quantum number). a) with the low pass filter (chaotic itinerancy)

To study the time behavior, the input of an optical fiber b) with the band pass filter (periodic alternation)
picks up the intensity at a generic point on the wavefront

(the signal level is a suitable code of each mode). The time In the high F limit, when [D < 1, we expect spatio-
plot shows fine details en a time scale of seconds, corre- temporal chaos (STC) and indeed we have given evidence
sponding to the dielectric relaxation time of BSO. This time ["42]1 of Gaussian spectral fluctuations.
scale is typical of the fluctuations in a pure mode and of the In conclusion, we have reported experimental evidence of
internode switches. Each mode persist for a time of the periodic alternation and STC as two asymptotic limits for
order of a few minutes. The mode pattern (e.g. 7,6,5,4,3,2 very small and large Fresnel numbers in a (1 + 2)-dimen-

in Fig. 14b) repeats almost periodically. To improve the sional optical system. At the lower edge of the intermediate
selectivity we commute from the pinhole (low, pass filter) to region we have obser,,ed chaotic itinerancy. For still larger
the pinhole plus an axial stop (band pass filter). For the F we should expect transition phenomena which are not
same aperture size, introduction of the axial stop cuts off simpl a mathematical bifurcation as the usual laser thresh-
the lowest modes (1 and 0) and produces the regularization old but hich diplay the sl aling properties of phae tran-
shown in going from Fig. 14a s to b). sitions in extended media.
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A series of picosecond experiments and computer simulations will be presented that test collisional and
hydrodynamic models for vibrational relaxation in liquids. The relationships between isolated binary
collision models (IBC) and stochastic dynamics will be presepted. The appropriateness of IBC theory in

describing vibrational relaxation in liquids will also be discussed.

A proper description of vibrational energy transfer is es- sions between the solvent molecules and the oscillator, just
sential to the development of chemical reaction theory. In as they occur in the gas phase. This model known as the
liquids, progress inthis area is far-'behind that which has Isolated Binary Collision Model (IBC) states that KJ..(Q. T),
been made in other phases because of the complexity in- the relaxation rate of vibrational level i to j, is:
herent to this phase. Generally, two approaches have been
taken in attempting to model the vibrational relaxation of K-j(, T) = P_. .Z(Q, T) (3)
an excited oscillator in solution. One approach takes the
perspective of the excited molecule being solvated in a con- where P1...j(7) is the probability of i-+j per collision, Z(g, T)
tinuous viscoelastic media which exerts a frictional force on is the oscillator-solvent collision frequency, e is the solvent
the molecule. The most general form of this interaction is density, and T is the solvent temperature. Since PI. is in-
described by the generalized Langevin equation: dependent of density, the difference between relaxation in

the liquid and gas phases at constant T is solely given by
Z (0). Thus, multibody effects (i.e., correlations between col-

mna(t) = - dt'iny(t')v(t-t') + R(t) (1) lisions) are considered to be inconsequ!ential in this model.
1o The validity of this assumption has been the subject of a

where mi is the mass of the particle, R (t) is the random force, longstanding debate in the literature.
and y(t) is the memory function which provides the friction. As a test system for IBC theory, we have examined its
In this description, the noninstantaneous response of the applicability to experimental measurements and computer
media to the motions of the oscillator are included. The simulations of the ground state vibrational relaxation of
difficulty with this method has been in developing a model geminately recombined 12 in liquid Xe. Following photodis-
of, determining the form of y(t) [the frequency dependence sociation and recombination on the ground state surface,
of the friction]. Very early during the theoretical develop- the 12 has an excess of 12500 cm-' of vibrational energy
ment of vibrational relaxation in liquids, prior to use of the which it then dissipates to the solvent. This relaxation proc-
generalized Langevin model, a simpler form of this model ess occurs over 100 12 vibrational levels with the vibrational
known as the Langevin equation was used to describe vi- spacing varying from 0 to 214 cm- . Since 12 contains only
brational relaxation in solution [1]. According to the Lan- one vibrational degree of freedom, the role of the solvent in
gevin equation, dissipating the excess vibrational energy of the excited 12 can

be studied with this system without competition from intra-
ina(t) = -yv(t) + R(t) . (2) molecular vibrational energy transfer. Furthermore, Xe is

an ideal choice as the solvent because of its spherical ge-
In the Langevin model, y, the friction coefficient, is a con- ometry which makes computations on this system easier and
stant and thus, the solvent is assumed to respond instan- eliminates all but the translational degrees of freedom as the
taneously to all oscillator motions. While this model has solvent energy accepting modes.
been successful in describing some phenomenon where the IBC theory is not expected to be valid for this system for
solute moves slowly in relation to the solvent molecules, it two reasons. Frist, the low vibrational frequencies involved
has failed in the modeling of vibrational relaxation where are comparable to the expected collision frequencies. Thus,
the oscillator motions can be quite fast in comparison to interference between collisions would be expected to occur.
that of the solvent [2]. Second, IBC theory should not be applicable to a highly

An alternative perspective adapted to describing vibra- excited oscillator in solution as the collisions will be driven
tional relaxation in solution is that based on the molecular by the large amplitude motions of the oscillator rather than
nature of the solvent-solute interactions. In this framework, occurring at random interNals resulting from the solvent
the interactions which are importart to vibrational relaxa- motion. In contrast, prexious studies of the IBC theor)'s
tion are assumed to be dominatet, by isolated binary t.olli- xalidit) at liquid densit) hale fou.ubbed on the density de-
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pendence of the v = 1 -0 time of high frequency oscillators The 12 vibrational energy as a function of time is determined
such- as H2 and N2 where the above conditions do not exist experimentally through picosecond transient absorption
and IBC theory may be valid [3]. spectroscopy. Due to the change of the Franck-Condon fac-

Additionally, study of themultilevel relaxation process of tors with vibrational energy, the transient absorption shifts
12 offers a -unique perspective on. the validity of the IBC from the near infrared at high vibrational energies to ap-
model as compared to -these other experiments. The diffi- proximately 520 nm at v = 0. With the transient absorptions
culty with interpreting the results of the v = 1---0 studies in this wavelength region and by calculating the extinction
is that a calculation of Z (a) is necessary in order to ascertain coefficients for the ground state absorption, the vibrational
the validity of. the IBC model since the relative chanje in population distribution can be determined as a function of
relaxation rates between two densities to and 02 according time by applying Beer's law. This analysis has been per-
to the IBC model is given by formed for the lower 6000 cm-I of the 12 ground state po-

tential surface. The density range of Xe in which the exper-
K-s(eo) Z(o,) iment was performed was 1.8 to 3.4 g/e at 280 K which
K1-(0 2) - Z(02) (4) corresponds to a Lennard-Jones reduced density (0a') range

of 0.57 to 1.07 at a Lennard-Jones reduced temperature (kT/
In solution, a collision is a nebulous concept and calcula- s) of 1.26. A sample plot of vibrational energy vs. time for
tions of Z vary widely in magnitude with model and are the 1.8 g/cc and the time scaled F0 g/cc is shown in the Fig.
verysensitive to parameters such as molecular size. Thus, 1. The functional form of the relaxation at all densities is the
studies in which the relaxation rate between two levels is same. Thus, the Pj-j are density independent over the entire
measured as a-function of density do not test the underlying liquid density portion of the Xe phase diagram as is assumed
assumption of the density independence of P..1 separately in the IBC model.
from the model of Z() employed. In the experiments on 12, 6.0
the relaxation has been experimentally measured over ap-
proximately 30 vibrational levels (we could not directly ob-
serve the relaxation over the upper half of the ground state ,/

surface). Following the relaxation over a large number of u 45 o 1. G/ML

vibrational levels as a function of solvent density eliminates C - 3.0 G/ML
the need of calculating Z in testing the density dependence 315.

>-3.0(1CALED BY 3.01of the Pjj.
To understand this distinction, consider the relaxation c

process over many vibrational levels in the IBC framework. w'
After Z(Q) t binary collisions, the vibrational population .5
distribution vector, N(t), would be

N(t) = p'P...'P.N(t=0) = P"'-N(t=0) (5) 0. 2500. 50b0. 7500. 10000.
TIME (PSECI

where P is the matrix of relaxation probabilities per collision Fig. I
for transitions between all levels of the system. The role of The 12's average vibrational energy as a function of time in 1.8 g/
Z(Q) in this description of the relaxation is to control the cc Xe (circles) and in 3.0 g/cc Xe (line) where the time base of the

3.0 g/ce data has been multiplied by 3.0. The functional form of the
timescale of the relaxation process. If the time were nor- relaxation is identical for the two solvent densities. The error bars
malized by Z(e), i.e., t' = t/Z(), then the resulting N(t') represent one standard deviation of the average energy for the 1.8
would be identical for all o. Hence, plots of the average g/cc Xe solution
energy of the system as a function of time for different den-
sity should show the same functional form, differing only by Concurrent with the experiments, a theoretical model of
a linear scaling of the time axis which accounts for the the 12/Xe system was constructed. In order to provide a
change in Z(C). Provided Z() does not vary with vibra- reference system for comparison of IBC and continuum the-
tional energy, any deviation from linear scaling would be ones, a molecular dynamics simulation of 12/Xe was per-
an indication of nonbinary behavior. The timescaling factor formed. Comparisons of the predictions of these theories
S necessary to overlap the energy decay curve at e2 to that with the simulation results will therefore not depend upon
of Q, can be determined from differences in the potentials assumed (in contrast to com-

parisons with the experimental results) [4]. The system was
Z (e "t = S- Z (Q2) t (6) a classical molecular dynamics simulation using periodic

boundary conditions. The potentials used were a Lennard-
which leads to Jones potential between the iodine atoms and Xe atoms and

a RKR potential for 12. There were 255 xenon atoms and
SZ(0) (7) one iodine molecule in the system, these numbers were cho-

S()sen because they minimized the effects of heating of the
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liquid-after dissociation due to the small number of particles ergy may be negative for r < a2'6, but the accelerations are
and itwas still a small enough system to allow a reasonable not negative. Since the liquid rarely samples the attractive
number of trajectories to calculated on a Cray X-MP. The part of the potential, it was thought that the IBC simulation
functional forms of the vibrational energy vs. time for all would be more realistic if it also did not sample that part
the densities performed were the same. This would seem to of the potential. The turning point in the gas phase will also
indicate as described above that the P,., are density inde- be on average at a smaller radius than in the liquid due to
pendent. Also, the functional form found from the molecular the heat of vaporization, however, the one dimensional mo-
dynamics simulations was seemingly the same functional del's turning point should be comparable to the molecular
form found in the experiments. The only difference was that dynamics simulation due to the use of the WCA potential.
the molecular dynamics relaxed about 12.4 times faster than Secondly, not having an attractive section of the potential
the experiment. This may be due in part to the finite volume makes the integration of the trajectory much quicker since
of Xe heating upfrom the dissociation energy of the iodine, there is less distance to integrate over and there is no pos-
Also, the Lennard-Jones potential may be steeper than the sibility of forming a long lived complex. Thirdly, the molec-
real 12-Xe potential. Qualitatively, the density dependence ular dynamics simulation that the one dimensional trajec-
of the relaxation was the same for both the molecular dy- tories would be compared to used a Lennard-Jones potential
namics and the experiment. There was some discrepancy in and the WCA decomposition is the closest approximation
the actual numbers. Over the liquid range studied by the to the Lennard-Jones potential within the above constraintF
experiment, from 1.8 g/cc to 3.4 g/cc, the vibrational relax- The trajectories show qualitatively what you would ex-
ation was 4 times faster. The molecular dynamics was also pect keeping in mind 12's anharmonicity. Vibrational energy
4 times faster for the range of 1.8 g/cc to 3.0 g/cc. The transfer increases non linearly as a function of v, the vibra-
molecular dynamics could not be run at 3.4 g/cc because tional quantum number. This at variance to Landau Teller
that is Lennard-Jones solid while real Xe is a fluid. This theory, which predicts a linear increases with v. Of course,
shows that the molecular dynamics seems to be a fairly Landau Teller theory is based on a harmonic oscillator and
realistic representation of the vibrational relaxation in the 12 is most definitely not a harmonic oscillator. A calculatibn
liquid and only fails mainly to lack of exact potentials. of 12's average vibrational energy vs. time was performed

Given the success of reproducing experimental results by using data provided by the one dimensional calculations and
the molecular dynamics and the evidence that IBC theory it was found that the functional form of the energy loss was
may provide a valid model for explaining the experimental the same as both the molecular dynamics simulations and
results, an IBC calculation was performed. The calculation the experiments.
of PI-j performed for 12 and Xe is a one dimensional classical In order for IBC theory to be a useful theory it must also
calculation of energy loss. Studies have shown that the one be able to make quantitative predictions of the relaxation
dimensional calculation is a reasonable substitutc for three for a particular density and predictions of the density de-
dimensions if the constraints described in a paper by pendence. The collision rate of 4.5 per ps., which was re-
McKenzie are realized [5]. The I-I potential used is the same quired to fit the molecular dynamics simulation, is a quite
RKR surface as used in the molecular dynamics simulation., reasonable first order guess of what the collision rate should
The potential between I and Xe is a Weeks Chandler An- be for Xe at. 1.8 g/cc. Since the trajectory calculations were
derson (WCA) decomposition of the Lennard-Jones poten- one dimensional, there must be some steric weighting factor
tial [6]. Note that the WCA decomposition was originally to take into account that some collisions are not collinear.
intended to explain liquid structures for reduced densities It is not clear what that factor should be, the value for the
greater that 0.6. Even though most of the comparisons to steric factor could range from one to less than 1/3 [7,8].
molecular dynamics will be in this range, WCA was not Nevertheless, the fact that P,-, seems to be constant as a
chosen for this reason. function of density demonstrates that the steric factor is also

a constant of density. An estimate of the scale factor can be
F/aV 2  ~.\61found using

V(r) = 4; - + C where r < r,
K, (olg, (R*)9

C = 4e - where r, = 21/6)a (8) K2  92! 92 (R*)

K, is the rate for the liquid at density o, where the i--+j
V(r) = 0 where r > r,. subscript has been dropped, K, is rate at liquid density 02,

g, (R*) is the radial distribution function for that liquid den-
The WCA decomposition was chosen for three reasons. sit) evaluated at some R*, and 92(R*) is the radial distri-
When a gas liquifies, energy (the heat of %aporization) is bution function evaluated at R* for density 2. R* is the
released due to the solent atoms spending most of their turning point for the most effective .ollibions and it is as-
time in the bottom of the well %,here the potential is repul- sumed that this region is small. In 1971, Da.is and Oppen-
si%,e. The attracti,e part of the potential is defined as the heim derixed this equation, using a mabter equation ap-
part of th., potential %,here ,he accelerations are negatic. proach to describe %ibrational relaxation in the weak cou-
Note that in the Lennard-Jones potential, the potential en- pling limit in a liquid [9,10]. Their theory %Nas thought at
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the time,,to apply only to high. frequency, 9cillators, al- autocorrelation function frequency spectrum, down to fre-
though work by Chesnoy seems to indicate otherwise [11]. quencies of , 50 cm- '. This is evidence for the appropri-

Thispresents the problem of calculating the g (R*) for the ateness for using IBC theory to model the vibrational re-
oscillator. One approach to this problem was to use the laxation even though 12 has such a low vibrational fre-
attractive hard spheres pair distribution model by Delalande quency. This implies that the coupling to the bath is weak
and-Gale, [12]. This model assumes that the collision rate and could be treated as linear. Accordingly, stochastic-the-
should' be calculated at the hard sphere radius. One then ones should also be appropriate for this system. A stochastic
assumes the radial, distribution function at R* can be ap- approach should work due to the linearity of the system and
proximated by the Carnahan and Starling approximation, its ability to take into account the many body forces through
[13] the total force autocorrelation. Smith and Harris have ap-

I \ plied a generalized Langevin equation technique to this
12). Rproblem and also found results that agree with the molecular

g(R*(1 --)3 ; =") OU (10) dynamics simulations [18,19].

TOTAL FACF (-) IBC FACF (- -)
where a is the hard sphere contact distance and e is the 1.2
number density. The problem with this approximation is
that the hard sphere radius which provides the best model
for the radial distribution is not necessarily the correct ra- I
-dius at which to evaluate R*. A more sophisticated version
of this theory was employed by Madden and van Swol [14]. 0.8
They used WCA theory to calculate the cavity distribution'
function which was then related to the ratio of vibrational
relaxation rates in a dilute gas to a dense liquid. This as- o.
sumed that g(R) could be approximated by a properly cho- z
sen hard sphere fluid of the same density. They did not 04
equate R* with the hard sphere diameter used to calculate 0.4 I

the radial distribution function. We calculated the radial
distribution of an iodine atom in liquid Xe directly. Using o.2
the R* calculated from the one dimensional trajectories,
3.7-3.8 A, good agreement was found for the scale factors
given by equation nine for the different densities. 0

The scale factors could also have been calculated using
continuum theories. It has been shown that the vibrational -0.2
relaxation rate is affected by [15,16]

I -0.41
F(t) = f(rb(t)) Z f(r,(O))) (11) 0 0.6 1 1.5 2 2.5 3

TIME (PSEC)
Fbt f(r(0)Prb(0)) (12) Fig. 2

b The total force autocorrelation and the binary force autocorrelation

described in Eqs. (It) and (12) are calculated for an I atom in 1.8

Where F(t) is the total force autocorrelation, Fb(t) is the g/cc Xe. The early time components are very similar

binary force-autocorrelation and f(t) is the coupling from
the liquid to the oscillator at time t. Oxtoby has also con- Both of the above approaches will fail if the coupling
sidered this type of division of the forces [17]. From these between the bath and oscillator is strong. IBC theory will
correlation functions and the Golden Rule, the relaxation also fail if the binary force autocorrelation function power
rate is spectrum at the appropriate frequency is not the same as

the total force autocorrelation. The most probable reason
I Sd d ct I F(t). (13) for the two force autocorrelation functions not being the

same is if many body effects become more important and
provide damping at the oscillators frequency.

Basically, the component of the force autocorrelation spec- Thus we have shown through experiments and calcula-
trum at the oscillator frequency determines the relaxation tions that IBC theory and continuum theories seem to
rate. Figs. 2 and 3 show the force autocorrelations and the model well the vibrational relaxation of 12 in a simple liquid.
frequency spectrum for an I atom in liquid Xe at 1.8 g,cc. This is somewhat surprising given that 1L is such a low fre-
It has been found that the binary force autocorrelation func- quenty) oscillator and the 1, vibrational amplitude is quite
tion frequency spectrum was very similat to the total force large in the upper part of the well. Further experiments in
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Stochastic Resonance (SR) is a term given to an effect which is manifest in multi stable nonlinear systems
driven simultaneously by noise and a weak periodic function, whereby the information flow through the
system, in the form of the frequency of the periodic function, is assisted by the noise. For every frequency
of the -modulation, the information flow is optimum for a specific noise intensity, that is for a specific
Kramers transition rate, nence the term resonance. Two physical quantities which characterize the response
of such a system have been the objects of a flurry of recent experimental and theoretical activity: the
Fourier transform, or auto correlation function of the appropriate state variable, and the probability
density of the residence or escape times. The former have been used to obtain the power spectra and
hence the signal-to-noise ratios of the response, while the latter directly reflect the rates and symmetry
properties of the system. Catculation of these quantities pose specific problems for theorists characteristic
of non stationary Fokker-Planck systems. In this paper, I will briefly review the recent activity and include

some remarks on the historical foundations of SR.

1. Introduction portant in stddies on dynamical bifurcation phenomena, for

In recent years, interest in time modulated, stochastii., non- example, phase transitions oucuring under the simultaneous
linear systems ras been increasing. Such systems are im- influence of noise and time dependent parameters as %Nell as

Ber. Bunsenge. Phs. Chein 95 ,19Y1, Av. 3 k , CH Pertagsjesellschaft mbfH. I -0940 Ifeuzhomhn, 1991 00)5-9021, 91, 0303-0303 S 3.50 t 25,0
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various transport and phase locking properties of multi- For vanishingly small noise intensity, D --, 0, the switch-
stable systems [1-6] Stochastic resonance (SR) is an ex- ing rate approaches zero, and consequently the coherence
ample withan interesting history as wellas a number of vanishes. For indefinitely large noise, the coherence again
modern applications. The physical phenomenon.of SR =is becomes vanishingly small as the system response becomes
simply explained. Consider, for example, an over damped completely randomized. Between these two limits, there is
particle moving in a double well potential, subject to a ran- an optimum noise intensity which maximizes the coherence.
don! force. The system may be in contact with a heat bath, Early theorists unfortunately called this a "resonaice",
so th A he random forces result from thermal fluctuations. though the phenomenon is clearly distinct from true reso-
This simple construction is the starting point for many mo- nances, for example resonance activation which occurs when
lecular dynamical models which form the microscopic basis under damped systems with inertia are driven by an external
of modern chemical rate theory, as well as a variety of other frequency comparable to a natural frequency [1, 2].
physical appli ations [7]. A number of characteristics of SR have been observed

In the presence of noise, assumed to be Gaussian distrib- experimentally and satisfactorily explained by modern the-
uted, the particle can make transitions. SR arises because of ory, as I will outline in Section 2. The dynamics of SR can
an interplay between the modulation frequency and the fa- be approached, both in theory and experiment, on two lev-
mous Kramers rate [8], which in the unmodulated system els. One can look at a reduced, or "two state", dynamics
is given by wherein the only information required is which well the par-

ticle resides in at a given moment. Alternatively, one can

o --[U"(O)IU (c)]Iexp(-AUo/D), (1) observe the complete dynamics which, in addition to the
2n switching events, includes the stochastic and regular mo-

tions within the individual wells.
where U"(0) is the curvature of the potential barrier located The most frequently observed physical quantity in SR
(it x = 0) between the two wells. U"(c) is the curvature of experiments is the power spectrum P(wo). In measurements
the bottom of the wells (at x = ±c), AU0 is the height of on real physical systems with symmetric potentials U(x), the
the barrier of the unmodulated potential, and D is the noise power spectrum shows a sequence of sharp peaks (in theory
(or thermal fluctuation) intensity, defined by the correlation they are delta functions) of decreasing amplitude located at
function. odd integer multiples of the modulation frequency riding on

a broad Lorentzian noise background. If the symmetry of
< (t) (s)) = 2D(t - s), (2) U(x) is destroyed, weaker peaks at the even integer multiples

of co appear. The signal-to-noise ratio (SNR) is the ratio of
with K (t)> = 0. In the absence of modulation, the particle the amplitude of the signal peak to the amplitude of the
makes transitions over the barrier at random times and re- noise background, both determined at the fundamental fre-
sides in one or the otherwell for a random length of time. quency. The signal peaks represent the coherent part of the
The response is similar to the random telegraph signal. The response. SR is demonstrated by observing that the SNR
probability density of the residence times is a decreasing increases from zero and passes through a maximum with
exponential function, and the power spectrum is a Lorent- noise intensity in the two state dynamics. (For the complete
zian. dynamics, in addition, the SNR -* oo in the limit D -* 0,

Now we can further imagine that the particle is subject due to the coherent motion within a single well.)
to anh,'dditional force: a weak periodic modulation of fre- The total power contained in the noise and the signal can
quency co. Here, "weak" means that the periodic force alone be determined by integration of the power spectra. In the
is not sufficiently strong to induce the particle to undergo two state dynamics, it is observed that the total power is a
a transition from one potential well to the other. However, constant, i.e. as the power of the modulation is increased
in the additional presence of the noise, the particle makes the power in the signal peak increases while the noise power
trao'.iions, which are now, however, to some extent coher- decreases to maintain the total constant. For the complete
ehit with the modulation. The potential is time dependent dynamics, the relation between these two powers is more

complicated, but generally, the signal power grows at the
U(x,t) = Uo(x) + ax sinco0 t, (3) expense of the noise power in the response.

An alternative quantity, which also clearly demonstrates
and if a < A Uo, and wo < ru (the latter is known as the ad- the coherence of the stochastic response with the modula-
iabatic approximation) the time dependent Kramers rate is tion, is the probabiliq densit) of residence times. This quan-
approximately given by tity shows a sequence of strong, Gaussian-like peaks cen-

tered at odd integer multiple of the modulation half period,

r(t) = [Il"(O) '(c)' exp[(--AU0 + sincoot)/D]. (4) T/2 = i/t, characterized by exponentially decaying maxi-
mum amplitudes. There are no corresponding features at
sub harmonics of co in the power spectra.

It is this modulation of the rate 'which accounts for the In Section 2 of this paper, I %Nill sketch the historical
coherence bet'ween the response and the modulation fun,,.- development of SR theor) and outlin, the modern theories.
tions. In Section 3, 1 will discuss the two experiments which have
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.been d6ne and summarize their results. In, Section 4 the Interest in SR seems then to have waned until 1988 when
technique of physical; measurements on analog simulators McNamara, Wiesenfeld and Roy demonstrated it in an in-
ofSR-systems will be introduced. Somerepiesentative data genious experiment with a ring laser [15] which I willbriefly
is,.presenfed in this section and 6mpared With the theory. discuss in Section 2. This experiment imihediately stimulated
Finally, a summary and some speculation onfuture possi- a rash of theoretical activity, [16-23] aswell as two analog
bilities ate presented in Section 5. simulations [22-25] which I will discuss further in Sec-

tion 2.

2. His toriaBackground andModern Theory
A. Historical Background B. Outline of the Recent Theory

Two models have been considered, as mentioned before:
The mechanism of SR was first propounded and investi- the two state and the complete dynamics models. Consid-

gated by Vulpiani and his co workers [9) as an interesting ering these models, contemporary theories fit into two cate-
stochastic effect in, nonlinear dynamics which might have gories: the adiabatic approximations [16,17,20,22], and the
useful applications in a-variety of fields. The chief theoretical non adiabatic calculations [18,21]. Though originally the
difficulty in SR problems is that in the presence of an ex- means by which F-P systems could be treated within adia-
ternal temporal modulation, the corresponding Fokker- batic approximations was put forth by Carolli et. al. [26],
Planck (F-P) equation is not solvable for the probability and more recently by Bryant, Wiesenfeld and McNamara
density exactly. These early authors, therefore, concentrated [27], the first contemporary use of tis approximation for
onestimates of the mean residence or "sojourn time", dem- SR theory was due to McNamara and Wiesenfeld [16]
onstrating that this time became closely comparable to the (MW).
half period of the external periodic modulation for the op- The object is to calculate the power spectrum of the mo-
timum value of the noise intensity., Residence time theory tion of a particle moving in a generic bistable potential
for periodically modulated stochastic systems, which within the framework of the two state model. Following
avoided the problems posed by the non stationary F-P MW, discrete variables x+ are chosen to denote the location
equation, had been earlier developed by Eckmann, Thomas of the particle in either the right (+) or left (-) potential
and Wittwer and was successfully applied to SR early on well with corresponding probabilities n, for which n+ =
[10]. It can be mentioned at this point that residence time I-n_. A rate equation can then be written in terms of W±,
measurements have only recently been made on experimen-
tal SR systems, as I shall discuss in Section 3. The first study the transition rates out of the ± states:
of SR in a partial differential system was carried out on the dn+ dn_
stochastically perturbed Ginzburg-Landau equation also by -= -= Vn -dt + . (5)
Vulpiani and company [11]. Finally, these same authors, dt t

together with Parisi, proposed SR, in 1982, as a possible The probability density is effectively reduced to a pair of
explanation of the observed periodicities in the recurrences delta functions located at the minima of the two potential
of the earth's ice ages [12]. In this view, the earth's climate wells and weighted by n+ and ni respectively, and from
is represented by a one dimensional bistable potential, one
(eta) stable state of which represents a largely ice covered this density the moments can be computed. Specifically theearth [13].The external o noise is assumed to come from short second moment (x2>, is needed. In order to solve (5), someterm fluctuations in the balance between radiative and trans- approximate form for IV, is required, and MW use an ex-

port processes, and the periodic modulation is most often pansion in terms of a small parameter cIocoswo , where
supposed to originate from variations in the insolation re- l =
sulting from a small observed oscillation in the eccentricity
of earth's orbit having a p-.riod of 100,000 years. Moreover, W±t = ± al ol cos o t +...), (6)
the power spectrum of the dynamical coordinate of the sys-
tem was introduced here for the first time in SR systems in where ao and the product al qo are treated as parameters
numerical simulations of.the climate model. of the system. From Eq. (5), a solution for n+ can be ob-

In 1983, Fauve and'Heslot made detailed measurements tained, and from that the autocorrelation function
on a noise driven, periodically modulated, bistable electronic x(t)x(t+T)xo,to> and its to---,oo asymptotic limit
system (a Schmitt trigger) [14]. They measured the power (x(t)x(t + r)>. This quantity leads directly to the power
spectrum of the output from which they extracted the SNR, spectrum through the Wiener-Khintchine theorem:
and observed that this quantity passed through a maximum
with increasing noise intensity, thus demonstrating SR for 2o4 2 1 F 4(x 2) 1
the first time in a laboratory experiment. The location of S( I) = 1 2( 2 IoI)2 -

the maximum in the SNR was identified (roughly) with the 2(o ) [L c?+ 1 (7)
specific value of the noise intensity for which the Kramers + 7t<x 2)'c?1°, 6()-oo).2 2 (-o)
rate in the unperturbed potential becomes comparable to co coo
the modulation frequency. No theory was put forth by these
authors. Instead, their experiment served to clearl) dem- This result makes two notable prcditions, both born out
onstrate the observable, physical aspects of SR. by experiment, as shown in Section 3. first, the shape of the
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power spectrum is a delta function contributed by the modu- where Ca and m are the additive and multiplicative noises
lation riding on-a Lorentzian noise background; and second, respectively. For the details of this calculation and for the
the total power,.signal plus noise, is-a constant. This latter results of an analog simulation of this neuron potential for
remarkable property means that the power in the signal part both over damped and inertial dynamics, the reader is re-
of the response grows at, the precise expense of the noise ferred to Ref. [25].
power: a property which is true only of.the two state model. Turning now to the non adiabatic theory of Hinggi and
MW'have generalized their theory to include the complete Jung [18], the generic Langevin equation used in the de-
dynamics of an over damped particle in the standard quartic velopment reads
potential:

b e = x-x, +c cos(co t + 0)+ (t), (13)
U(X' t) X -2X e-xgxcot, (8)

2 where 0 is a random phase uniformly distributed over one

cycle [0,2n], and where (t) is the usual Gaussian, white
where , for the unperturbed (c =0) potential, A Uo = a214 b noise. The periodicity of the resulting, non stationary F-P
and the minima are located at +c = +V/ib. The Langevin equation is used in analogy with procedures used in peri-
equation therefore reads, odically forced quantum mechanical systems to write down

a solution in terms of a Floquet characteristic exponent p
=-OU(xt) = ax-bx' +ccoswo t + 2 (t). (9)

In this case, the parameters are known: ao = (/2a/n) pi'(x) = el" pl'(x)in"'. (14)

exp(-AUo/D); a, = 2co and flo = cc/2D, which can be
substituted into Eq. (7) in order to obtain the power spec- The Floquet exponents are identified with the eigenvalues
trum. For the complete solutioit, I refer the reader to Ref. of an analogous two dimensional F-P process which are
[16], and quote here instead only an approximate expres- purely imaginary. This implies that the autocorrelation func-
sion for the SNR, valid for small modulation strength tion x(t) is a non decaying periodic function. This function

a 2 
-is calculated explicitly from the asymptotic probability den-

SNR t --- exp(-AUo/D). (10) sity obtained as the solution of the non stationary F-P equa-p( tion. It is shown that the very same autocorrelation function

can be obtained from the non stationary F-P equation by
It only remains to summarize briefly the-approximations averaging over the random phase 40. It is important to note
used by MW. First, the adiabatic approximation in the MW that all SR experiments, using both the laser and analog
theory is coo << U"(±c) rather than the more stringent con- simulators, are performed by inherently averaging over the
dition (at least for small D) that coo 4 r0 . The retention of (random) phase of the periodic modulation. This is discussed
only the first two terms in the expansion of Eq. (6) requires further in Section 3. The predictions of this theory for the
that a, no < a0, or in the model using the quartic potential, real one-sided (i.e. measurable) power spectrum are twofold:
that no < 1. This means that & < D and that r < AU0 . first, the predicted signal features in the power spectrum are

I mention here that the adiabatic approximation has also a sequence of delta functions, and second, for symmetric
been used for construction of a contemporary theory of the potentials like the standard quartic, they occur only at odd
residence times in SR systems. For the details of that theory, multiples of the modulation frequency. These predictions
I refer the reader to Ref. [22] and to the paper by P. Jung have been born out by both the laser experiment [15] and
and P. Hfinggi in this Proceedings. Suffice it to say here that most especially by measurements on analog simulators [24]
the theory predicts a sequence of peaks in the probability where the measured line widths in the signal are completely
density of residence times, of exponentially decreasing am- accounted for by the instrumental resolution and bandwidth
plitude, located at the odd integer multiples of the modu- (.e. the signal features in a system with infinite resolution
lation half period n,'wo. Some examples measured on the and bandwidth would be ideally delta functions). Moreover,
analog simulator experiments are shown in Section 3. the sequence of peaks at odd multiples of w0 are readily

The MW theory has also been used to calculate the SNRs observed.
of a noisy neuron [25] using the Hopfield potential [28], Finally, I conclude this section with a brief outline of the

theory developed by Marchesoni and coworkers [20,23].

x 2  They have treated first the case of an over damped particle
U(x,t) =-.- - q(t) ln(coshx) - &x coswot - x'Jt), (11) in the standard quartic potential wvithin the framework of

perturbation theory also in analogy to techniques developed
for treating periodically forced quantum mechanical sys-

where the one dimensional state variable %, represents the tems. Thus the) also a~oid the limitations of the adiabatic
firing rate. Moreover, for this model the MW theory has approximation, but are instead confined by the limitations
been generalized to include multiplicative noise, of perturbation theory. While the results of these calcula-

tions are in qualitative agreement with analog simulations
1(t) = n1o + m(t), (12) performed by the same group, the theory does not predict
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the delta function form for the signal functionnor does it is inserted in the ring. This device creates a potential having a weak
,predict the-sequdnce of features at odd harmonics of oo. A barrier separating two stable states which correspond to the two
major contribution by this group has been to treat the case directions of light travel. The potential can be modulated with the
mof i ntrim tion wi thi the p adab nt ppr ationcand acoustic frequency which is in turn controlled by the external noise
of inertial motion within the adiabatic approximation, and and periodic signal voltages. A fraction of the light traveling in one
to show that the same approximation can be used to obtain direction was extracted from the ring and passed to a photo diode.
some predictionsabout the behavior of SR systems in the The output of the photo diode was amplified, stored in a digital
,presence of colored noise. the relevant Langevin equation is oscilloscope and then Fourier analyzed to obtain the power spec-

trum. This experiment provided the first evidence for SR in a phys-
(15) ical system other than electronic.

'9+ + , (15) Though some early authors and MW as well performed digital
simulations by integrating an appropriate stochastic differential

where y is the damping coastant, and (t) is now a colored equation, the most recent tests of the modern theory have been
noise defined by provided by analog simulators. These are electronic circuit models,

designed following a particular stochastic differential equation us-
ing modern analog components, for example, voltage multipliers,

D exp[-It-sl/T], (16) dividers, logarithmic and antilogarithmic amplifiers etc. [29,30].
T Addition of voltages is performed in the usual way with operational

amplifiers. The circuit integrates the mimicked differential equation
by collecting charge on a capacitor in the feedback path of an

with T the noise correlation time. The results of this theory operational amplifier. An example electronic simulator of over
are in quite good agreement with SNR measurements made damped motion in the standard quartic potential is shown sche-
on an analog simulator of Eqs. (15) and (16) for various matically in Fig. 2. The two components shown with crosses rep-
values of both y and r considered as parameters. resent voltage multipliers. The minus sign indicates an inverting

operational amplifier, and the summer adds all the inputs to form
the voltage equivalent of the right hand side of the differential

3, Experiments and Simulations equation shown. Integration in time then computes x(t), which
closes the loop on the circuit. The feedback capacitor and the inputAn early electronic experiment on SR was done by Fauve and resistor of the integrator define the integrator time constant ;,,

Heslot [14] using a Schmitt trigger. This experiment was repeated which establishes the time scale on which the simulator operates.
more recently also by MeNamara and Wiesenfeld [16]. The dy- As shown in Fig. 2, the circuit is driven by a signal generator which
namics of the Schmitt trigger are represented by the two state provides the periodic modulation, and a noise generator [31] which
model. An elementary diagram and the input-output voltage char- provides wide band Gaussian noise. A linear filter between the noise
acteristic of this device are shown in Fig. 1. When operated such generator and the circuit model (not shown) produces time corre-
that (V,) = 0, i.e. in the middle of the bistable region, the output lated noise with correlation function given by Eq. (16) [32]. The
voltage V0, can assume either of the two values, V,,,, = ± V1. With mean square noise voltage 4(1), < 2(t)> at the output of the filter is

,noise-alone as the input, the trigger randomly switches between measured with a wide band voltmeter, and the noise intensity is
these states, and the output is the random telegraph signal. When obtained from ad(t)> = D/, a
the periodic modulation is added to the noise, the switching events
become to some degree coherent, and the measured power spectrum
of the output shows the characteristic sequence of delta-like peaks Signl
riding on the Lorentzian noise background as discussed in Section ge
2. The SNR can be measured in the usual way using the amplitudes
of the signal peak and the noise at the fundamental modulation X 2 _X3 E si',t
frequency. MW find good agreement between their SNR measure-
ments and the two state theory. , ,/Noise

V0  
E _ _

c ,sinwt Vn Vi (

Vin Xv (0f t x 0

V 0
-V1  X =x-x 3 + Esinwt+ (t)

Fig. 2(a) (b) A schematic diagram of the analog simulator of the standard quar-
Fig. I tic potential. The x symbols represent multipliers, the - is an
(a) A schemati,, diagram of a S,.hmitt trigger using an operational inverting amplifier, I is an operational amplifier summing circuit,
amplifier driven by noise and a period%, function. (b) The transfer and the integrator, shon by fdt, is an operational amplifier with
characteristic of the Shmitt trigger. The circuit operates as the two an input resistor R and a feedback capacitor C vkvich result in a
state model within the bistable region time constant T, = RC. The stochastic differential equation of the

motion is shown below

It was the observation of SR in a dye, ring laser [15] by
McNamara, Wiesenfeld and Roy, how ever, %Nhich triggered the The time dependent v oltagec. s A), and in some ,.a ucs .ki), are then
modern burst of theoretical activity. These authors destribed ,n passcd to an analog-tu-digital ,onv.ctor (ADC). After digitizing,
experiment wherein the bistabilit) is represented b) the ditetiuon these time scne a,; then stored in a .omputci and po.essed. A
of travel of the light vithin the ring. An a.outov-optic. modulator numb, r of quantitie, and ihefi abseffble a ctiagc, .aa be obtained
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fr6hi-these data, only- two- of which are discussed here: thepower 1.00 - - - - -- - ---
spectrunandthe residence,-time tirobability density. .00 T Ti

Typically,'2000,digitized point are obtained in- a single,time 8

seriesby-d6ning, the gate owthe ADc at a random phase of the
,periodicmodulation. The power spectrum and/or probability den- .e. .400
sity,are-compiited,.andstored for averaging. Perhaps 410.000 such .200
operations are. performed, each timeopenihg the ADC gate at. a
random phase. In this way the final result is obtained as an average .0001 (a)
over .the 'phase of the modulation. Example data are shown in Fig. -.200
3.,In Fig.. 3(a), an example time series, x(t), is shown as digitized [.-0
directly fromthe circuit model. Note that this represents the com-
,plete.dynamics. The switching behayior between the two wells is -.600

evident as well as the intra well motion. A sample of theperiodic -.o00
modulation is shown in Fig. 3(b), and the final, averaged power . . .!__ u--
,spectrum is shown,in (c). Note the Lorentzian noise background, 10.0 20.0 30.0 40.0 50.0 60,0 70.0 80o.o 90.0 00.

the delia-likepeak aitthe 'Modulation frequency and the small 3ed Thu (M)
harmonic peak, 2000

-- 100 "

(a) 100
01400

1200 (b)

(b)__1,ob

/00 A A 1 1. 1

0 2.00 4.00 5.00 8.00 1O.0 14.0 16.0 MO 20.0

Tin* (ins)

(Fig. 4
(C) (a) A time series measured after connecting a voltage comparator

at the output of the analog simiIator, The simulator dynamics thus
L mimic the two state mode The sequence of residence times,

To, T, ... Ti, are determined for one well only, in this example the
Fig. 3 well located near + 1 volt. (b) An example of a measured proba-
Example data from the analog simulator, showing (a) a digitized bility density of residence times assembled from many samples of
time series xQ); (b) the periodic modulation; and (c) the power the time series. In this example the modulating frequency was 500
spectrum averaged from many samp.Is of time series. The width of liz so that the half period, To/2 = I ms. Note the sequence at odd
the signal peak is determined completely by the bandwidth and multiples of To/2
frequency resojition of the measuring and Fourier transforming
systems clude that the sequences of peaks in the residence time probability

density and in the power spectrum are unrelated except that they
In order to study the two state model or to measti;t the prob- both reflect the inherent symmetry of the standard quartic potential.

ability density of residence times, it is necessary to eliminate the The particular circuit shown in Fig. 2, and the example results
intra well motion by replacing it with a constant, say one volt. This of Figs. 3 and 4, are for over damped motion in the standard quartic

potential, many other models are possible as discussed in Ref. [29]is accomplished by connecting the output if the circuit to a voltage including also cases of inertial motion with arbitrary damping. A
comparator whose output voltage obeys the following logic: recent example is the noisy Hopfield neuron as discussed in Ref.

+1 if x () > 0 [25]. In every case, the simulators were constructed following the
Xiwitatc= -I if X(t) < 0. (17) principles outlined here.

An example of the comparator output is shown in Fig. 4 (a). The 4. Some Results
residence times, Ti, for the right well (Xt, 1o.at = + 1) are shown.
Fig. 4 (b) shows an example of the measured probability density of In this section, I will present some further data for comparison
residence times for a modulation frequency of f = 2 kHz. Note with the theoretical predictions. First, the SNR data for the case of
the first maximum located at T0/2 = I ms and the successive peaks , = 0.4 and fu = 50 Hz using the standard quartic, over damped
at odd multiples of T0/2. We note in passing that, while the power dynamics specified by Eqs. (8) and (9) are shown in Fig. 5. The
spectrum is the almost universall) accepted tool of choice for har- asterisks are the measured SNRs and the solid curve is the calcu-
monic analysis, the residence time probability density certainly ex- lated result from Eq. (10). The plus signs show the behavior of the
hbits a distinctive characteristii, structure and insume applhations noise batkground amplitude measured from the power spectrum
may be more suitable. Indeed, FletLher, Ha% lin and Weiss [33] have at the modulation frequen y. These are plotted on the vertical scale
found this quantity most useful in studies on random walk prob- in decibels using the standard definition, amplitude in db = 10
lems. Further, we note that if cony erted to frequencies, these pcaks, IogSNR. We see that the location of the maximum is predicted by
except for the first one, would be subharmonics of the fundamental the approximate relation with reasonable accuraL) Since Eq (10)
frequency. Yet, in spite of careful, precision sear,.hes, no such sub- is valid onl) for small D, it is nut surprising that the agreement
harmonics are observable in the measured power bpec-tra. We c.on- seems to break dun at larget nise intenhit) An ina,.ura) in the
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piofting routine, ac&ounts, for the apparent discrep~ancy near the (xt)= a 2 + b 4
.origin. T 2 +-j x - o caso)0 t + qx. (18)

30.0 The effect of q can be illustrated by setting c = 0, applying the
noise and simply measuring the stationary probability density P(x).
An example is shown in Fig. 6(a) which shows that we have lowered

22.0, the left well at x = -1 V and raised the right-hand well. If 'the
modulation is now switched on' (s # 0), then a power spectrum as
shown in Fig. 6(b) is obtained. We note the usual sequence of

14.0- stronger peaks atfo = 50 Hz and'its odd multiples. In addition,
10.01 there are now weaker peaks at the even harmonics. This clearly

, ' demonstrates the symmetry arguments made by H~inggi and Jung
:.00. 

1)

-2 .0 0 . . 5 9 2 3 _ -

6.00 - 29l4--

0 .250 . .750 .00 1,25 L.50 1.75 2.00 2.25 2.50 53. -

Fig. 5
An example of stochastic resonance. The vertical scale is the SNR 5 (a)
in decibels. The asterisks are the measured results, the curve is an
approximate theory and the plus signs are the values of the noise
background measured at the modulation frequency 53

9.00 2,6

8,10

, .20 0 250 .500 .750 1.00 1,25 1.50 1.75 2,00 2.25 2.50
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1059 .400
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372. 0 .200 .400 .000 .800 1.00 1.20 1,40 1.0 1.0 2.00

186, F,#"ncy (fz)
" Fig. 7

37.2 (b) (a) Two power spectra, one of the noise alone (dotted curve) and
18.6 the other of the modulation plus the noise (solid curve). Note the

A decreased noise background when the modulation is present. (b)
3 72 The integrals of the data shown in (a), where the dashed curve is
1. 88 the noise alone and the solid curve is the noise plus the modulation." The two curves converge at high frequency indicating that the total

power in each spectrum is a constant
0 050 .150 M250 .3 0 350 AD 450 c ncg

Freqy (Ki) Finally, the constancy of total power in the noise and signal
Fig. 6 spectra can be demonstrated as shown in Fig. 7. First the noiseFi. 6 mspectrum alone is measured by setting a = 0. This is shown by the
(a) A measured probility density P(x), in the absence of modulation dotted curve in Fig. 7(a). For all the same experimental conditions,
for the asymmetric potential. The well near -I volt is the more the modulation is now switched on as shown by the solid curve
stable. (b) The power spectrum measured for the asymmetric po- with the familiar signal peak. Note that the noise background has
tential, showing the usual sequence of peaks at the odd harmonics been suppressed by the modulation. The magnitudes of the total
as well as a weaker set of peaks at the even harmonics powers can be displayed by digitally integrating the data of Fig.

7(a). These curves are shown in (b), where the solid curve is the
Next, the effect of the ! ,mmetry of the potential on the sequence result %Nith the modulation present and the dashed i.uivc ibs the noise

of peaks in the power spectrum can be investigated. The symmetry alone. The tmo curves ,o nerge at high frequen%.y indiating the
of the standard quartic can be destroyed by adding a small wonstant same total power. This result deadl) demonstrates the total power
force q: prediction of MW in Ref. [16]. It is, however, true only for the two
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statevmodel,,and can only be obtained from the simulator with the 0.2
voltage comparator on ihe output. "

We:how turn to. theprobability density, of residencetimes, the
adiabatic theory-of which was developedin Ref. [22]. This prob-
ability densitXwas assembled in'the usual wayfrom the Ti obtained
from measured time series as shown, for example, inwFig. 4. A result
calculated from the theory~of Ref. [22] is shown in Fig. 8(a), where "f

C
0)0.1 (d)

0.08.'
.0

0 0o (a) 0 .
0 40 80 120 160 200

t060. 04, Time (ms)

Fig. 8
(a) A P(T) curve and its mean (dashed curve) calculated from the

0.02 \ theory of Ref. [22] for D = 0.03 and e = 0.2. (b) a measured P(T)
curve for the same conditions from the analog simulator. The data

0. are plotted on a semi logarithmic- scale in order to illustrate the
0 50 .00 150 200 near exponential decay of amplitudes. (c) Calculated results for

D = 0.05, and (d) measured for the same conditions
t [msec]

the dashed curve is a calculation of the average density and is a
1200 , near exponential; This property is further illustrated by the data,

,- -(bmeasured for the same parameter values, shown in Fig. 8(b), where
'N P(T) is plotted on a semi logarithmic scale. The straight dashed

(b) line illustrates the near exponential decly of the amplitudes as
* 120 - - measured on the analog simulator, The slope of the dashed line is

* > - a strong function of D. Fig. 8(c) showsthe theoretical results for a
- larger value of D, and the corresponding measured result is shown

C in (d). There is a small discrepancy between the calculated and
a 12 measured slopes. This derives from an inherent uncertainty in de-

terminations of D from the analog simulator near the white noise
limit.

0 1.2
.0 -5. Discussion
0
C. In this paper, I have reviewed the development of the

0.1 2 I Itheory of SR and summarized the modern results. In par-
0 40 80 120 160 200 ticular, the striking predictions related to the symmetry

Time (ms) properties of the potential have been clearly demonstrated
by the analog simulations both in the frequency domain, by
measurements of the power spectra, and in the time domain

6.151 by measurements of the residence time probability densities.
I Moreover, the constant total power property of the two state

model was also demonstrated by direct measurements. It
should be noted that SR can occur in any bi- or multi-stable

0.10.1 potential, possibly in more than one spatial dimension as
A well. It has only been demonstrated, however, for the stan-

(c) dard, one dimensional quartic and for a single Hopfield
C) neuron potential. It is likely that SR will find further appli-

V 0.05- cations if the theory can be generalized to networks.

It is a pleasure to thank Peter Hfinggi and Peter Jung for incisive
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Rajarshi Roy, and Fabio Marchesoni, and I am indebted to Ting

0 Zhou for his continuing help with the simulations. This work was
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Effect of Periodic Driving on the Escape in Periodic Potentials
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Lehrstuhl fflr Theoretische Physik, Universit'it Augsburg, Memminger Strae 6, D-8900 Augsburg, Germany

Chemical Kinetics / Diffuision / Nonequilibrium Phenomena / Statistical Mechanics
We consider activation processes in multistable systems exposed to external fluctuations and periodic
modulation. The concept of defining escape rates out of a basin of attraction as the ratio of total flux
over the basin boundary and the population inside the basin of attraction is generalized for periodically
driven systems. Thereby, the escape rate is connected with the Floquet-spectrum of the time inhomo-
geneous Fokker-Planck operator. Our formalism is demonstrated for the particular case of a multistable
washboard potential. Numerical results are compared with theoretical results in the limits of small and

large driving frequencies, respectively.
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1. Introduction The dynamical system without noise is assumed to have two
Activation processes in bi- and multistable systems play coexisting basins of attraction, A, and A2. Under the influ-

an important role in many fields of physics and chemistry ence of noise, the systems can cross the basin boundary and
such as optical bistability [1], tunnel junctions [2] and can thus escape from one basin of attraction to the other.
chemical reaction kinetics [3] to quote but a few. The com- Injecting particles in A, and absorbing them in the neigh-
mon situation is a dynamical system with at least two basins boring attractor A2 -(by appropriate use of reflecting and
of attraction. Fluctuations provide the possibility of crossing absorbing boundary conditions [3]) a stationary flux S12(x)
a basin boundary and thus give rise to escape events. The over the basin boundary a(A1,A2) between A, and A2 builds
statistics of barrier crossings has been discussed in terms of up. The escape rate from A, to A2 is then given by the ratio
escape rates in the celebrated paper by Kramers [4], and of the total flux over the basin boundary and the total pop-
subsequently in a large number of publications [5]. More ulation in A, i.e. [8]
recently, the role of additional periodic driving, modeling
the influence of periodic external fields, has been considered r= S dx - n(x) S12(x)/J dx" p(x). (2.3)
in a number of experimental and theoretical investigations e(A, Aj
[6]. In the low friction regime, the dynamical system has In the weak noise limit, i.e. D-O, the rates are connected
been transformed to action angle variables, yielding under to the smallest non-vanishing eigenvalue ).amn of the Fokker-
the assumption of regular deterministic motion a time ho- Planck equation, corresponding to (2.1, 2.2), by
mogeneous Fokker-Planck equation in action or equiva-
lently in energy space [6a,f]. The overdamped limit has been I - r'2 + r2 (2.4)
considered recently by one of us for a quartic double well -mi

potential [7]. In the regime of small and large driving fre- In periodically driven systems, e.g.
quencies, approximation schemes have been derived [7]
while, thus far, in the intermediate regime only numerical , = hz(xi,x 2,..., x,) + b5k A sin Ot + 1(t), (25)
-results are yet available.

In section 2 of this paper a general concept for escape i = 1,2,...,n and k e [1,n],
rates in periodically driven systems is presented. In section
3 the particular model, Brownian motion in a washboard there is no stationary structure of attractors in the phase
potential, is introduced and the equations of motion are space, spanned up by the variables xi. Thus, the flux-over-
discussed. The connections between escape rates, mobility population method cannot immediately be applied. Time
and the diffusion coefficient in the overdamped limit are dependent escape rates, defined as momentary rates have
derived within a jump model in section 4. In section 5, the been discussed in the literature [9]. As a consequence, the
enhancement of the escape rate due to periodic forcing is decay of the population is non-exponential [10]. The latter
computed as a function of the driving amplitude and fre- conception is therefore questionable. In the following we
quency in the overdamped limit, introduce a concept which results in time independent es-

The static current voltage characteristics, i.e. the averaged cape rates and in exponentially decaying populations.
velocity as a function of the bias, is known to exhibit Shapiro In a first step we extend the phase space to n + 1 dimen-
steps. In section 6, the dynamical current voltage charac- sions by introducing the additional variable Oe-fEt + cp.

teristic, i.e. the averaged velocity as a function of the driving Escape rates are now defined in the same way just as in the
amplitude, is evaluated. The observed dynamical behavior stationary case, but now in the extended phase space. Par-
is surprisingly rich and includes besides steps, which are ticles have to be injected into and absorbed out of the rel-
closely related to Shapiro steps, also oscillatory behavior. evant attractors in the extended phase space. The resulting
One main difference to the static current-voltage character- stationary flux has to be integrated along the basin bound-
istic is that the averaged velocity can also decrease with ary of the extended phase space. Since the integration of the
increasing driving amplitude, flux along the basin boundary involves also an integration

over the additional variable e, the total flux and thus also
2. Basic Concept the rate is time-independent [7,11]. The smallest non-van-

In this section a general concept for escape rates in sys- ishing eigenvalue 221n of the Fokker-Planck equation in the
tems with periodic forcing is presented. For the following extended phase space is connected in the limit of weak noise
discussion we assume that our problem is stated in terms of to the escape rates il2 and 21 evaluated via flux over pop-
a set of Langevin equations ulation method in the extended phase space by

91= h(x,x2,.....) + (t) i = 1,2...,n, (2.1) ).r( . - P2+ i21 . (2.6)

where the set {x} denotes macrovariables, h,(x,....x ) are
the force fields acting on x, and ,, are Gaussian white noise The cigenvalues of the Fokker-Planck equation in the ex-
forces, i.e. tended phase space are indentical with the Floquet-coeffi-

cients of the non-stationary stochastic process in n dimen-= 0 (2.2) sions [7,11,12] (described by the Fokker-Planck equation

(< (t) j(t')> = 2D6ij8(t - ). corresponding to (2.1) without extending the phase space).
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Thus, the escape ratec of'the periodically driven stochastic the Langevin equation (34) reads
process (2.5) isalso given'by the'smallest-non-vanishing Flo-
quet-coefficient of the corresponding time inhomogeneous R + y, + sinx = F+ A sin('ni) + (i, (3.6)
Fokker-Planck equation.

In one dimensional bistable systems, i.e. n = 1, the ex- with
tended phase space is the two-dimensional x - 9-space. The
basin boundary, is the unstable periodic orbiti.e. a(A,,A 2) ('(t ('') = 2fD 8(t- "). (3.7)
is a one-dimensional object in x-0-space; In two-dimen-
sional problems, such as the Kramers' problem with periodic Here, the dots denote differentiation with respect to F For
driving, x = v, t) = -yv +f(x) + Asinfit + (t), the extended large damping, i.e. y > i/i, the first term on the l.h.s. of (3.6)
phase space becomes three-dimensional and the basin or equivalently (3.4) can be neglected, and we obtain
boundary is an object which is two dimensional below hom-
oclinic threshold(regular motion), and a fractal above hom- dx = -sinx + F+ A singt + /D (t), (3.8)
oclinicthreshold (irregular motion). The escape in the latter dt
case is connected with the flux through a fractal basin
boundary. While the regular regime has been treated in the with the scaled time t - (d/f) t = y- I-and the scaled fre-
weak damping limit within an energy diffusion equation as quency Q = y = ( /d)w.
mentioned in the introduction, the irregular regime is not
yet solved. 4. Escape Rates, Mobility and Diffusion Constant in the

Overdamped Limit
3. The Model: Equations of Motion The stochastic dynamics in the multiwell potential (3.1)

The (tilted) one dimensional-washboard potential may be modelled by a hopping dynamics between the wells.
In the overdamped case there is only hopping between

V(x) = -dcosx- Fx (3.1) neighboring wells, i.e.

isamultistablepotentialforF<dwithminimaand maxima P, r P.-_ +r-P, -(r + +r-)P,, (4.1)

given',by where P denotes the probability that the system is in the
F"  . p-th well and rt are the escape rates from the n-th to the

= arcsa n - + 2nn n = 0, ±1, ± 2,... (3.2) (n ±1)-th well. The rates r+ and r- are assumed to be in-
dependent of the site n. In periodically modulated systems

F the rates and populations above are understood as those
4 = x - arcsin 7 + 2nn n = 0, + 1, ± 2,.... (3.3) defined in the extended phase space. The stationary solution

for k-fold periodic boundary conditions, i.e.

The variable x is dimensionless and can thus be interpreted
as an angle variable (but not necessarily modulo 2n). The P.t 2 .k = P. (4.2)
Newtonian equation of motion supplemented by a noise
term, i.e. the Langevin equation, reads: is the uniform distribution

9 + 9; - V'(x) = 2 sin(o ) + (t), (3.4) P  1/k. (4.3)

where dots indicate differentiation with respect to the time The mean velocity is given by the product of the stationary
t. The fluctuation-dissipation-theorem of the second kind flux (r' - r-) P(") and the length 2ink, i.e.

[13] is fulfilled without periodic driving, i.e. <v> = 2(r+ - r). (4.4a)

(( (?)> = 21kT8(i- ?'). (3.5) The mobility, defined by the ratio of the mean velocity <v>

In dimensionless v~iriables, i.e. and force F then reads

S-v> (r+-r (4.4b)

A -The diffusion coefficient can be obtained from the first and
second-order moments (n(t)> and (n2(t)> of the master

w-VJ/d equation (4.1)

D kT/d (n2 (t)> = (r+ + r-)t + (r+ - r-)2 t2

F d n(t)> = (r -r-)t. (4.5)
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The second term onhe r.h~s.of the first equation of . is Note,,that'for-(2fi +'1)-fold periodic boundary conditions,
artrnsIpo&termand'vanishesforzero:bias, while'the first the Bz-boundariesok= +1/2 are not allowed values. There-
term onthe-t.h.s. of'(4.5) is a diffusive term. The diffusion forefor this choice of boundary conditions the rates are not
c6efficientDff, defined by connected via (4;8)to eigenvalues!

b4 -'(xQ) -(XODY>)> (4.6)

is given by

D = (2 x)'- ((<n (t)>- (n(t)>2 ) = 2n2(r+ + r-).
2 dt (4.7)

In the weak noise limit, the escape rate is connected with
the smallest non-vanishing eigenvalue of the Fokker-Planck
operator corresponding to (3.8) in the extended phase space, 0=1

A delicate problem; however, is the choice of the boundary
conditi'ns~for the Fokker-Planck equation. Using simple 112 0k 1/2
periodic boundary conditions, i.e. P(x,Ot) = P(x + 27,,t),
the potential is not bistable in the interval [0,2n]. The out- Fig. I
going flux at one boundary is identical with the incoming, A typical reduco band structure for the eigenvalues of a Fokker-

Planck equation with a periodic potential is shown. Two bands
flux at the other boundary. Thus, the population in the well a = I aad a = ±2 are plotted within the- first Brillouin zone
is not decaying and the smallest non-vanishing eigenvalue k e[-1/2,1/2]
has not the meaning of an escape rate. Using two-fold pe-
riodic boundary conditions, i.e. P(xO,t) = P(x + 47, O,t), The individual rates r may be obtained by using (4.4b)
the potential is bistable in [0,4n]. Thus, the population in
one of'the wells may decay, and the smallest non-vanishing and (4.8), i.e.

eigenvalue Arin is connected with the escape rates r± by Amin +F (410)r= -ml +
Amn = 2(r+ + r-) (4.8)

Using n-fold periodic boundary conditions, i.e. P(x.O,t) = For symmetric potentials (F= 0) the rates r; are obtained
from the eigenvalue Amin only, while for tilted potentialsP(x + 2tn, O,t), additional branches of eigenvalues emerge, (F #0) it is necessary to compute also the mobility.

being connected with relaxation processes between not-ad-
jacent potential wells. The situation can be understood in i Finally we note that the diffusion coefficient D&f in (4.6)jacet ptenialwels. he ituaioncanbe ndestod i isconnected to the eigenvalue Ami, by
terms of a Bloch theory. A periodic force field in space x
provides eigen-solutions of the Bloch-type, Def = 70A)min. (4.11)

Vp4(x,O) = exp(ikx) u1i(xO) (4.9a)
4.1. Results for the Unperturbed System (A = 0)

with Here we briefly review on the results without periodic
driving. In Gaussian approximation the rates are given by

u (x +2nO) = u (x,O), (4.9b) [14]

where the quasi continuous index k may be restricted to the I [ 1 ]
first Brillouin zone (Bz), i.e. - 1/2 < k < 1/2 (in the sym- rt = Iexp - (dF+.2FarcsinF+21/i'-S)1.
metric choice). In Fig. I a typical band structure is sketched (4.12)
for illustration. The other index a numbers the eigenvalues
for a given value of k, i.e.is the analogue to the band index The total rate out of a potential well is then given by
in solid state theory. Simple periodic boundary conditions
restrict the possible values for k to k = 0, while two-fold
periodic boundary conditions allow for k = 0, ± 1/2. n-fold ro r + r
periodic. boundary -conditions select as possible values = _ _-- 7 ex r- 2
k, = 0, ±1/n, ±2/n,... with IkQ < 1/2. The relevant eigen- = V exp- -- FarcsinF (4.13)
value for the rate, however, is only the smallest non-vanish-
ing eigenvalue at one of the boundaries of the first Bz, al- 2 1_-- F2] cosh Fir
though there are smaller eigenvalues within the first Bz. D Dc
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ifi(412) and (4.13) the normalization of (.8) has been used. for periodic boundary conditions in 0, i.e. p(x,9,t) =
The mobility is obtained from ,(4Ab), i.e. P(x, 0 + 2n, t) and two-fold periodic boundary tonditions in

x, i.e., P(x,O,O = P(x+47r,O,t). More genera'ly, the full
2 2 band-scheme for the eigenvalues 2,(k) is obtained from the
F exP- -DarcsinF (4:14) boundary value problem

-- il-isinh 2] -l
D VD 1' [A, (k) + Dk2] +i(x,O).=[LFP+i(sinx + A sin6) (5.5)

while the difftusion coefficient Dff is given by + 2iDka ua(xO)

- with simple periodic bqundary conditions-for u (x,O) in 0

2 - n (415) and x and k e [-1/2:/2]. As already fiienitioned earlier,

_ /- V F7 ] cosh (..). A, , is identical with/2.. 1(k = 1/2).

basin 1 basia 2
5.Escape 'Ratesfor the Periodically Forced System in the 6.28-

Overdamped Limit S U S

The Langevin equation (3.8) in the extended phase space
reads' 4.71 -

x= -sinx+F +AsinO+ (t) (5.1) 0
0 =fl, 3.14.1

I i
Without noise, the unstable periodic orbits for small A/122 I .

may be obtained by linearization around the unstable fixed 1 5

points, ie. I,

xu"(O) = n(2n + I)- arcsinF 0.00-
1 r -3.14 0.00 3.14 6.28 9.42

A, si 0- arctan (__---____ (.2 X
+ I F2 +22 L \V(5.2) Fig. 2

V1 P+ 0The stable (full lines) and unstable dashed lines) periodic orbits are
shown in the x -0 phase space. The unstable periodic orbit close

where n = 0, ± 1, ± 2,... The stable periodic orbits for small to x = n separates the phase space x [-n, 3 n] intq; two basins of

A/1 2 are obtained similarly and are given by attraction. The attractors are the stabe periodic orbits (limit cycles)
in the x- 0 phase space

x"(O) =2nn + arcsinF

A s rca (5.3) The numerically evaluated rate enhancement , 1(A,Q,D)*
+ + 2 (sin -arctan - due to the periodic driving, i.e.

2(A, 2,D)

In Fig. 2, the x-O phase space (x e [-n,3n], 0e [0,2t] is q(A,QD)= (A=,D) 1 (56)

shown with numericaiiy evaluated stable and unstable pe- )(A=0,D)

riodic orbits without bias (F= 0) for A = 0.5. The unstable is plotted in Fig. 3 as a function of the amplitude A for
periodic orbit divides the phase space into two basins of different values of the driving frequency in a double loga-
attraction. The basin boundary becomes for large frequen- rithmic plot. The straight lines for small A with a slope of
cies Q or small driving amplitudes A a straight line. The 2 clearly indicate the law
escape rate is given in terms of the smallest non-vanishing
real eigenvalue ).,(A, 2,D) of the Fokker-Planck equation i(A, ,D) = K( ,D) A2  (5.7)

a-P(x,O,t) = --- (sinx + A sin0) P(x,O,t) being valid for small driving amplitudes A. In Fig. 4, theTtax rate enhancement factor K(f,D) is shown as a function of
the driving frequency 2 for various values of the noise

- S2 P(x,0,t) + D P(x,0,t) (5.4) strength D in a double logarithmic plot. For small 2, the0 X PX0factor mc reaches a certain plateau, while for large R2 the rate

- LFpP(xOt) enhancement factor exhibits a decrease oc92-2.
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,103" ______ Both limits, Q'small and- large, can be described ap-
proximately. For small frequencies Q << Wohopping an adiabatic
approximation [7] yields10 0=. 1

-(A,Q,D) ; Io(Art/D) -1 , (5.8)

1'0where io(x) is amodified Bessel function [15]. For A/D--*O
one finds approximately

5K(QD) n (5.9)

The crux with the adiabatic approximat.6n is that with small
10 10 10 'noise strength it is valid only for exponentially small driving

A frequencies.
0 Fig. 3- In the high frequency limit the averaging method of Ref.

The ratd enhancement q(AfQ) is shown as a function of A in a 7 yields for the rate enhancement
double-logarithmic plot for Q 0.1, Q = 1 and 0 = 5. The power
,law for sm all A is evident q(A , 2,D ) ;zI A or t 1 (5 .10)

2Dt22  2D2(.0

D=0:2 Both limits (5.9) and (5.10) are compared with the numerical

101 . results for D = 0.2 in Fig. 5.
D=0.5 We do not discuss individual rate r+ or r- in the presence

o of bias (F # 0), since the effect of periodic driving is the same
10. D=1.0 as in the symmetric case (F = 0). We want to point out,

" 1 however, that they can be obtained by computing the av-

101 eraged mobility p and the relevant eigenvalue A,,4, and by
using (4,10). The effective diffusion coefficient Dfg (4.6) is

02 connectedwith the relevant eigenvlue Ati, by Eq, (4.11) and
10-2  thus exhibits the same dependence onthe driving frequency

and amplitude.
10 . 3

10 . 3 ' 10 . 2  10"1  1 0 101 6. The Dynamical- Current-Voltage Characteristic

Fig. 4 The current-voltage characteristics of the model (3.8), i.e.
The rate enhancement factor K is shown as a function of the driving <:> (- voltage) as a function of the bias F (= current) has
frequency 9? for D = 0.2, D = 0.5 and D = been discussed in the context of Josephson junctions [16],

phase locking in electric circuits [17] and mode locking in

102 , ring laser gyroscopes [18]. The periodic driving gives rise
-.-.-.- to steps which have been observed first by Shapiro [19] in

Josephson junctions. In terms of the model (3.8),without

101 noise, these steps occur when the periodic output xp(t)
"locks" into the phase of the periodic driving. The locking

Kc condition is fulfilled when the period T= 2it/O2 of the driv-

100 ing is a multiple of the time Ts, the system needs for running
down the tilted potential one period L = 2it, i.e. when

1 0-' = n, (6.1)

where < 9> is the averaged velocity along one spatial period
10-2 21t. The influence of noise consists in rounding the steps or

10 3  10- 2  10- 1  1 0 10 destroying them if the noise strength is sufficiently large.10' Characteristic is the stepwise but monotonous increase of

Fig. 5 the voltage with increasing current F.
The rate enhancement factor K is compared with the theoretical The dynamical current-voltage characteristic will be de-

results (5.9) and (5.10) at D = 0.2 for small and large driving fre- fined as the voltage <9> as a function of the driving am-
quencies. plitude A. Without noise, such a dynamical current-voltage
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characteristic is shown in Fig. 6a for F= 0.8 and Q.= 1 In Fig. 6b the dynamical. current voltage characteristics
(dashed line). The voltage vanishes for A'< AM, since the is shown for the smaller bias F 05. Here are no phase
system cannot overcome thebarrier. At A- A(" the system lockedregions at all. The locked regions are estimated with-
jumps into a running state, and is locked into the phase of out noise in the following [20]. For convenience we choose
the periodic driving in the locking regime n = I (see Eq. a cos-driving in the equation of motion, i.e.

.(6.1)). For A' ) > A > AQ) thelocking conditions cannot be
fulfilled (for an explanation see below) and the voltage drops : = -sinx + A cosot + F. (6.2)
down. The locking conditions are fulfilled only on discon-
nected intervals of the.A-axis, and the width of the locked Inserting the ansatz
regions decreases'for increasing driving amplitudes A. For
very large values of A, i.e. A-o, the locking condition + sina t + <e>t (6.3)
cannot be fulfilld any more and the voltage relaxes oscil- x(0 = x0 +
latory to its asymptotic value (<.> = F. The influence of
noise (full line in Fig. 6a) results in rounding off the plateaus into (6.2) we obtain
in the phase locked regions and finally in destroying the
,phase locking for large driving amplitudes.

=F- k J(A102)sin(xo+(kfW+<9>)t) (6.4)A (')A(2 .. (3-)

from which < > 'ollows self consistently. In (6.4) JA (x) are
Bessel functions [15], and xo is an arbitrary phase. In the

1.0, phase locked regions we find by using (6.1) and averaging
over one, period the conditions for locking into the n-th

0.8 o, region, i.e.

0,6,- F-n£ = J,(A/) (-1)" sinx o. (6.5)

For the 0-th region (<i> = 0) the condition F = Jo(A/W)sinxo has to be fulfilled. The solution is discussed graphically

0.2 in Fig. 7 for F= 0.8. It follows from Fig. 7 that for A > A("
there is no xo which makes the 'ocking condition for n = 0

0.01 fulfilled. For A > AM), however, le condition (6.5) for a = 1
0 5 11 16 21 can be fulfilled and the system locks into the n = 1 region.

A At a certain value of A = 40) the condition (6.5) for n = 1
Fig. 6a: can not be fulfilled any more and the locked regime
The dynamical current-voltage characteristic ((v> <x>) is shown (<,> = 202(n = 2) cannot be reached for Q = 1. Thus, the sys-
for F= 0.8 and Q = 1 without noise (dashed line) and with the noise tem cannot lock to the external signal and the voltage (9>
strength D = 0.01 (full line) shows oscillatory behavior as a function of the driving am-

1. 0 1.20,

0.8- at0.78,

0.6.
0.350

-0.07-0.2

0.0 '-0.5012 0 12 16 20

A A(0) At 2 (3) A
Fig. 6b: Fig. 7
The dynamical current-voltage characteristic (<v) >') is shown The functions Jo tAI) (full line) and Jt (AID2) tdashed line) arc plot-
for F= 0.5 and £2 = 1 without noise (dashed line) and with the noise ted together with the straight lines F, F-£2 and 2-F. The light
strength D = 0.01 (full line) regions of the stripe on top of the curves indicate phase locked

regions
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plitude. Due to the-oscillatory behavior of the Bessel func- tions. In addition we have presented dynamical current-volt-
tions, the locking condition fer n = 1 can be fulfilled again age characteristics, i.e. <t> as a function of the driving am-
in a number of intervals of larger A. It is obvious from Fig. 7 plitude A. The observed rich dynamical behavior has been
that the width of the locked intervals decrease for increasing explained in terms of phase locking;
values of the driving amplitude A until the Bessel functions, We are grateful for the financial support by the Stiftung Volks-
which decay asymptotically proportional to A-11', are ,too wagenwerk. We wish to thank Peter Talkner for helpful discussions
small for locking. Note, that the agreement of;the numerical on rate theory.
values A11 (Fig. 6a) with those obtained 'from the theory
becomes better for increasing driving amplitudes. References
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Dynamics of Multidimensional Barrier Crossing in the Overdamped Limit
Benny Carmeli'),,Vladimiro Mujica2 ), and Abraham Nitzan3 )

School of Chemistry, Tel-Aviv University, Tel-Aviv 69973, Israel

Chemical Kinetics / Diffusion / Nonequilibrium Phenomena / Transport Properties
Two methods for numerical solution of multidimensional diffusion problems are presented and applied
to the two dimensional barrier crossing problem in the overdamped limit. One of these methods is based
on evaluating the smallest non-vanishing eigenvalue of the Smoluchowski equation, and the other is based
on an adaption of Chandler's steady state correlation function approach. Both methods make use of the
fast Fourier transform algorithm for solving a transformed version of the Smoluchowski equation. The
numerical solutions are compared to results based on the Kramerstheory and some observations con-

cerning effects of the dynamics of barrier crossing problems are made.

1. Introduction in directions other then the reaction coordinate, the effect
The concept of activated processes provides a common of curvature of the reaction coordinate and the effect of non-

reference framework for the description of numerous im- isotropic diffusion, are of interest. A numerical algorithm
portant phenomena in chemistry and physics, such as chem- based on the use of fast Fourier transform (FFT) for solving
ical reactions in gaseous and condensed phases, desorption the diffusion equation was recently presented by Agmon and
from and diffusion on surfaces, diffusion of atoms and ions Kosloff [12]. Approximate methods based on time depend-
inside solids, dynamics of Josephson junctions and others ent self consistent field approximations were investigated by
[1]. The Smoluchowski equation has been widely used for Kaufman and Whaley [14]. In the present work we describe
describing these and other kind of relaxation processes. [2] an improved FFT method, where by transforming the orig-
in the overdamped (high friction) regime. In the one dimen- inal Smoluchowski equation to a Schr6dinger-like equation
sional case it takes the following form (eliminating the first order spatial derivatives) we are able

to use the analog of the Fleck and Feit split order propa-
["x 0ja d V(x) 1 gation scheme [15] rather than the finite difference method

P(,tlx') = + P(xtx) (1) of Kosloff and Kosloff [16]. Moreover, we focus on thebarrier crossing rate, and apply the numerical technique to
directly evaluate theoretically based expressions for this rate

where P(x,tlx') is the probability density for finding the rather than trying to extract it from the resulting time ev-
system at position x at time t given that it has been initially olution. Finally we use our results to discuss several issues
at x. D = kB T/yM is the diffusion constant (kB is the Boltz- associated with barrier crossing problems as mentioned
man constant, T is the absolute temperature, y denotes the above.
friction coefficient and M is the mass of the diffusing par- Section (2) of this paper describes the numerical method.
tide), P is the inverse of kBT and V(x) is the potential of Section (3) describes the application of the numerical ap-
mean force. While one dimensional models are frequently proach to the calculation of the rate by solving for the small-
useful to describe the evolution of a system along ihe re- est non-vanishing eigei*value of the Smoluchowski equation
action coordinate (namely the minimum energy path be- and by evaluating the saturation-plateau value of
tween the initial and final states) motion in directions nor- (N(0) IR(t)> where N(t) is the population in the reactant well
mal to the reaction coordinate may have significant dynamic at time t. Application to a particular two dimensional model
consequences [2-13]. is described in Section (4). Section (5) presents and discusses

In this paper we discuss methods for the numerical so- the numerical results for a model two dimensional system.
lution of the multidimensional analog of Eq. (1), and apply We conclude in Section (6).
two such methods to a two dimensional barrier crossing
problem. Multidimensional effects on the dynamics of bar-
rier crossing processes have been subjects of several studies 2. Numerical Solution of the Diffusion Equation
lately [2- 12]. Several issues, such as the effect of diffusion The multidimensional version of the diffusion equation

(Eq. (1)) is
i Present address: Department of Physics, Nuclear Research Cen-

tre - Negev, P.O. Box 9001, Beer-Sheva 84190, Israel. a
2) Present address: Escula de Quimica, Facultad de Ciencias, Urn- atP(x,tx') = V "D [V + V(flV(x))] P(x,tlx') (2)

versidad Central de Venezuela, Apartado 47102, Caracas 1051,
',nezuela.

' Present address. Chemn.al PhysiLs Department, \Neizmann In- Nxhere x denotes a Nector in the multidimensional configu-
stitute of Science, Rehovot 76100, Israel. ration space and D is the multidimensional diffusion tensor.
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bD is assumedto be conistant (namely independent ofposi-
tion)Tbut t not necessarily isotropic. i(x,tlx') = on-O p 0 (x)'exp(- t)'q,,(X'). n" (10)

A formal solution toEq. (2) is
Since H is real and symmetric its left eigenfunctions are

P(xtlx') = exp(Lt) P(x,t = 6Ix') (3) identical to its right eigenfunctions p,(x) = (nix> = <xln>.
This is in contrast to the operator L whose right and left

Where eigenfunctions are not identical. Denoting the latter by W,, (x)
and p: (x) we have

L - Vr' D" [V + (VP3V(x))]. (4)

An exact solution to Eq. (2) cannot be obtained in the gen-
Seral case. The FFT method for solving time dependent prob- Tp,+ (x) = (P. (x)/l/P' . (11 b)
lems associated with linear partial differential equations has
been recently shown by Agmon and Kosloff [12] to be very The corresponding eigenvalues are identical to those of H
useful forsolving the Smoluchowski equation. The simplest and satisfy
time propagation procedure is based on a first order differ-
ence scheme, namely A, = K<(p(x)HI(p,(x)> = <Kiv(x)ILjip.(x)> > 0. (12)

P(x,t+ Atjx') = P(x,tlx')+ AtLP(x,tlx')+O( At'). (5) Assuming that the "ground state" (p0 (x) is nondegenerate,
only one of the eigenvalues, A0, is zero and all the others are

The 2nd order scheme used for Schr6dinger equation is not positive. The normalization condition implies
stable in the present case. Agmon and Kosloff [12] have
used an expansion of the evolution operator in Chebychev j dX(Np 0 (4 txx)
polin-omials [16b]. Another convenient algorithm can be -00 (13)
obtained in principle by working with the exponential prop- CO
agator defined in Eq. (3), in the spirit of the split operator = J dxP)(x,tjx')- qo(x') = I
method of Feit and Fleck [15]. However since the operator
IL contains coupling between x and V it is not possible tosplit exp(L A t) (for small A t) into a product of exponentials where N is the dimensionality.
wi p it h on A ti(f or onallA 0 /into a s isodt dfoneinthe The problem of solving Eq. (2) has thus been transformedwhich depend either on x or on Ocsx as is done in the into that of solving-Eq. (7) where the "momentum" termsThere exist a transformation [17], which allows to de- (the terms containing V) and those depending on positioncouple the position from the gradient operators, thus mak- are separated. Note that this simple form for the "Hamil-ing it possible to use the exponential propagator without tonian" (Eq. (8)) is obtained only for position-independent

ing t pssile o ue te eponetia prpagtorwitoutdiffusion tensors.the need to linearize it. Let Pj(x) denote the equilibrium The time evolution associated with Eq.(7) is obtainedsolution of Eq. (2) and define • from

(x,tlx') = (xlx') (6) -P(x,t) = <xlexp(-Ht)@(t =0)> (14)

Then it is easy to show that the function 0 satisfies a Schr6- <4 exp(-TAt)-exp(-UAt)j0(tO)>
dinger like equation where the "kinetic energy" operator T denotes the term
a -VT.D.V appearing in Eq. (8) and where At=tn. In
"t = -HO (7) practice, the function 'P is defined on a grid in configuration

space. The exp(-T At) operator is carried out by the FFT
where the "Hamiltonian" H is technique.

H = _VT-D'V + U(x) (8) p(X, At) t F..k[e-T11 Fk..(e-uZ' t(x,O))] (15)

and the "effective potential" U is where the two exponential operators appear in their diag-
onal representations in the appropriate space, and where

U(x) = VT(flV/2).D. VflV/2)-V 1 DV(lV,2). (9) F,..A denotes a Fourier transform from k-space to x-space

To obtain these resultsit has been assumed that the diffusion fv 2n

tensor is symmetric (i.e., D = DT). (T O (
Let {qn(x)} and {)2,} respectively denote the sets of (nor-

malized) eigenfunctionb and eigen'alues of H. The Green's The choice of the initial distribution requires some attention.
function associated with Eq. (7) is gi-ven by In principle it is possible to make an arbitrar) selection but
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it'is advantageous to do it in such a way that the calculation Alternatively, if the initial "wave function" qp(x,0) does not
of,the specific observable of interest, e.g., transition rate, is contain the "ground state" qpo(x) i.e., (q01 o(0)> = 0,
easier. This point is discussed below. (this may be achieved, since po(x) is the known equilibrium

distribution, by the projection q(xO) -+ q(x,0) -
3. The Transition Rate and the Reactive Flux (po(x)9q (x,0)> followed by renormalization) then

The type of processes which are considered in this section
involve classical diffusion over a barrier, from a potential K(3) = )q = lim d In (p (t) 11). (22)
well to another region of the configuration space. In partic- dt

ular we are interested in the transition rate and in the con-
dition for it to exist as a meaningful measure of the reaction (b) Chandler's Method [21]

dynamics [17-21]. A different treatment for the calculation of the transition
It is convenient to write Eq. (2) as a continuity equation rate is based on the fluctuation dissipation theorem. Close

to equilibrium the relaxation process of an observable A(t)
aP(x,t) + VT.j(x,t) = 0 (17) obeys the following relation

where the probability flux'vector, J(: ,t) is given by <8A(t)>n (8A(0) 8A(t)>

J(x.t) = -D[V + V(PV(x))]P(x,t) . (18) <8A(0)>. <8A(0)2>

At a stationary state J(x,t) = J,, is a constant, and Where (...> and ... , respectively represent an equilibrium

P(x,t) = P,(x) does not evolve in time. For closed systems ensemble average (over initial conditions) and a non-equi-

the only stationary state is the equilibrium distribution librium one, and 8A(t) = A(t) - (A>.

P,(x), for which J, = 0. The barrier crossing process is char- The observable of interest is

acterized by a single rate (for practical purposes) if, following NQ) dxP(xtlxo) (24)
a short transient period after the initiation of the process,
the system developes a quasi steady state whose time evo-
lution is governed by the smallest non-vanishing eigenvalue where 0 is the domain defining the reactant state and
of the Smoluchowski equation and by a nearly constant flux P(xtlxo) is the distribution at time t given that initially it
from the reactant to the product well. Several approximate was
methods to evaluate this steady state rate are available:

(a) The Smallest Non-Vanishing Eigenvalue (SNVE) P(xt = OJx) = 8(X - xo); X0 e 2 (25)

Method [18,20] where xi is the i-th component of the N-dimensional vector

The existence of a well defined rate implies that ).,, the x and x,0 is the initial location of the distribution on the
smallest non-vanishing eigenvalue of L, is well separated i-th coordinate axis. The reaction coordinate is the minimum
from the higher eigenvalues (i.e., ).1 << 02. - 2) r-') and energy path between the reactants and the products potep-
that this eigenvalue is not degenerate. With this in mind and tial wells. However dynamical effects may create situations
for times t such that ).2 < t < :c the relaxation to equi- in which the maximum reactive flux does not go along the
librium is governed by ).1 which is then equal to the tran- minimum energy path. This aspect of the problem will be
sition rate K(fl). discussed below in the specific application to two-dimen-

These well recognized facts can be used within the nu- sional diffusion. Define
merical scheme described in Sect. (2) as follows: Using an
arbitrary initial distribution (p(xO) the distribution at time 8N(t) - dx[P(xtlxo) - e-fh(x/Q] (26a)
t is obtained by performing the evolution qp(x,t) =
e-'1(x,0) numerically. Observing that where

O(xt) = qp(x,t)-Wo(x) (19) Q= dxe - P1" . (26b)

(9o(x) is the state corresponding to the eigenvalue ).0 = 0)
satisfies Assuming that the relaxation of <8N(t)> to its equilibrium

value (i.e., zero) is given by the chemical rate K(fi), we find

110(tll2 - dxIO(x,0 2 = Iq(0112- 1 (20) from Eq. (23)
00

(SN(0) 6N(t)> = <[8N(0)]2> exp(-K(J)t) (27)
the transition rate K(fl) is obtained from

d_ and consequently
K(fl) = - -lT lnI (t)I2-1]" (21) (8N(0) 69"(t)> = -K([3) ([8N(0)] 2> exp(-K(fl)t) . (28)
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As discussed above (see.also Ref. [21])'for the process at (X-X o 2

:hand, to have a uniquely defined rate. constant one, must f(xy) a [cos2(0) + csin2(O)]
considei. times such that T , t, << K- 1. Then Eq. (28) implies,

S(N(O) 89(t)> + a YO (I a)si

- <[N(0) 2> (29) a a n(2) (
Thus, evaluating the saturatio n or plateau value of the r.h.s. + [sin2(0) + cos2()- 1
of Eq. (29) (usingthe numerical procedure of Sect. (2) for
the numerator) yields K(P). It is obvious that apart from where (xo; yo), a, 0 and a represent the parameters of any, of
reasons of numerical accuracy, the procedures based on Eqs. the two ellipses f(x,y) = 0. The subscripts R and L (Right
(20), (21) and (29) should yield identical results. and Left) represent different choices of the parameters. These

parameters are chosen for the two ellipses such that the
(€),Kramer's Formula [22] saddle point of the potential is at the origin. For the sake

Kramers has derived an expression for the escape rate out of simplicity we have considered in this article only poten-
of a one dimensional potential well in several limits asso- tials which are symmetric with respect to the y axis. The
ciated with the magnitude of the friction. For the over- parameter Vo is the hight of the potential barrier and the
damped limit governed by the Smoluchowski equation (1) reaction coordinate i.e., the minimum energy path, goes

and for high barriers (En > kBT) his result for the rate is from one well to the other through the origin. In all the
calculations described below we have taken aR = al, = a,

ID) (k-k ) E ) and have chosen the units of time and length such that a
"K R= 2n, exp - BT) (30) =DX + D = 1.

In the numerical evaluation of the rate Eq. (22) can be
where oB) and tow) are the vibrational frequencies corre- used as written, but Eqs. (28) and (29) may be simplified for
sponding to the top of the barrier and to the bottom of the the model considered. The dividing surface s, where the flux
well respectively and where the potential in these two is calculated, is taken as the y axis. By using the symmetry
regions has been approximated by its expansion up to quad- of the potential V(x,y) with respect to this axis, Eqs. (24),
ratic terms about these points. For a multidimensional sys- (25) and (2) lead to
tern, Eq. (30)'can be generalized byassuming that the non- CO
reactive modes are.in thermal equilibrium. Under this as- 8N(t = 0) = I dx j dy [S(x - xo) 8(y - yo) - e-Pv(x)IQ]
sumption the rate takes the form [23] 0 -0

I
= - (31) = e(xo)-" (35)

I' where e(x) is the Heaviside function. Also from Eq. (2)
where ND stands for "N-Dimensional" and where KTsT is 00 OV(xy)
the rate obtained from transition state theory 89'(t) = -D, Idy + 0x) (36)

I M dxrd n, e- V1 'X) (32) 
.

KnT LkDT , d0,yeO) ,0,.
7E (32)t) 9o

In Eqs. (31) and (32) the subscripts r and nr stand for reactive Q 0X
and nonreactive coordinates respectively. , d y (37)

I dxo Sdyoe1"'(x-.)()
4. A Two Dimensional Model -0 -

The method described in Sect. (2) has been applied to .p(x,y,tjxo,yo)e-Pv(xoYol [(xo)-
solve numerically the diffusion equation in two dimensions,L 2Jx0"

to compare the Kramers expression (31)) to different nu- Defining
merical ways of evaluating the rate and to examine effects
of multidimensionality on the reaction rates other ther these P(x[ (
incorporated in Eqs. (31) and (32). The potential surface used 2e x - . (38)
in this study may be written in the form

V(XY) = VOfR(XY)(XY) (33 Eq. (37) takes the form

where f(x,y) is a quadratic form in x and in y such that -<SN 3 (t)> = Dx dy e-# 0' (Ox- (3
f(x,y) = 0 describes the locus of an ellipse. In terms of the -00 ax (39)
geometrical parameters defined in Fig. 1,f(x,y) is "e+PV(x.)P(x,y, tIP)] X =o
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where and where
o o

P(x,y,tIP)= I dx0 I dyoPxy,tlxo,yo) (kB
-00 -0 (40) KW~ A iT (47)
•5(xoyo) = L,,P . M

Eqs. (39) and-(40) imply that the calculation of <8NI((t)> with
(hence of the escape rate, Eq. (29)) can be done by simply I dye "V(v °,Y)
propagating the initial."distribution ' P (x,y) of Eq. (38). This -o0
propagation is performed using the'FFT algorithm and the A = C 00 (48)
equivalent Schr6dinger equation (see below). A final-FFT J dx . dy e-Pvxy, )
procedure is then used to get the derivative with respect to
x in Eq. (39). The evaluation of Eq. (29) is facilitated by Since the origin is at the saddle point the barrier frequency
noting that the symmetry of the potential. implies is obtained from

=1 (41) 0V= --M(oB))2. (49)<[SN(0)]'>" = (41 02Vxo,-

4~ ~ ~ O2L-0 (4-0

Note that P(x,y) can be negative (in fact jdxP(x,y) = 0)
hence it is not a real distribution. An initial real normalized
distribution can be constructed as Substitution of Eqs. (47) and (48) in (45) then leads to

P(x,.y,t=0) = P0(.\,y)+P(x,y) (42) _ 2 V/ iV2SI

where P,(x,y) is the equilibrium distribution. Note that P, KE = Dx A at 21._,oo (50)

is orthogonal to P, KP IP> = 0; (<PI = constant). If this
choice of initial distribution is made than P can be inter- 5. Results and Discussion
preted as the deviation of the initial distribution from equi-
librium. In fact it is easy to see that P(xo,yo,t = 0) can be The initial "distribution" used in our calculation is given
used in the r.h.s. of Eq. (40) instead of P(xo,xo) without by Eq. (38). This corresponds to the actual distribution
changing the results for <8N89(t)> in Eq. (37). Eq. (42), leading to

In actual calculation we use the laguage of the equivalent CO 0 3
Schr6dinger equation to compute the r.h,s. of Eq. (39), The PR = I dx I dx P(x,y,O) = T (51 a)
rate Eq. (29) is the given by 0 -0 4

4D 0and
K = lim dye -JP(OY)0 O4,1,, K-" Q 111 _o ax I

4 1  tPL= Jdx I dxP(x,y,O) = (51b)

• I[ e + fi ' ', Y ) ( ( x ~ y , t l ') j x , 01 ]( 4 3 )

Eqs. (51 a) and (51 b) imply that the diffusion process follow-
where (1(x,y,fl4) is defined in analogy with Eq. (40) as the ing the preparation of this initial state proceeds from right
"wave function" at time t, given that at t = 0 it was to left.

In Table 2 we present results obtained from the different

(xo,yo) = 0o(xoyo) [e(xo) - 11. (44) methods described in the previous sections: The smallest
L=e 2 igenvalue (SNVE) method (Eq. (22)), Chandler's steady

state relaxation rate (CSSR) method (Eqs. (29) and (43)) and
It is evaluated as F(x,ytj) = e - " . Note that by sym- the Kramers' steady state rate (KSSR Eq. (50)). These results
metry it is orthogonal to the "ground state" (po(x,y) at all are given for different choices of the model parameters given
time. in Table 1. All the calculations where performed on a 21 x 2'

Next consider the Kramers result in two dimensions. Eq. grid covering the physical dimensions x -(- 1.5; 1.5), y =
(31) takes the form (- 1.0,1.0) (hence the spacings are Ax = 1.5 x 2-6 Ay =

1.0 x 2-6). The parameters in Table I characterize the po-
0 (B) V tential surface and the diffusion rates. The last colomn in

K =(0' Ks (45) Table 2 gives the number of timesteps used in the numerical
Y

time evolution.
where y is given by Two of the potential surfaces used in the calculations de-

scribed here are shown in Figs. 2 and 3. These figures display
DT (46) the potential surfaces corresponding to cases 1 (also 3 and
D= M 4) and 9 (also I and 12) of Table 1 respectively. Cases -4
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Table 1,
--Description of cases

Potential
parameters*) D1/DI fi V0  Case

OL= O 1.0 6 1 aL
OR 0 1.0 2 2
Os =i/2  5.0 6 3 \ OR
aL 5.0 0.2 6 4 L OR

cOR = 5.0

OL = /3  1.0 6 5
Ol t/6 1.0 2 6
Os =c12  5.0 6 7
aL 0.2 0.2 6 8

L' L R.R't= I "'(L'L (RY

OL n/4 1.0 6 9
OR n/4 1.0 2 10
Os = n/2 5.0 6 1
aL = 0.2 0.2 6 12 Fig. 1
al =
0 5.0 Description of the geometrical parameters of the potential, Eq. (33).
t1 0s is the angle between the two principal axes of the diffusion tensor.

In all the present calculations Os = n/2 and. these two principal axes
) See Fig. 1. are taken as the cartesian axes x and y

Table 2

Transition rates 0.4-

Case SNVE )  CSSRO KSSR)) Time

1 0,05007 0.05027 0.05658 2000
2 0.70500 0.69150 0.69950 2000 0.2-
3 0.08379 0.08260 - 2000
4 0.01449 0.01775 - 2000
5 0.05123 0.05156 0.05616 2000
6 0.70290 0.60090 0.59740 2000
7 0.07191 0.07252 - 2000 Y 0.0
8 0.01774 002086 - 2000
9 0.04751 0.04853 0.05677 2000 4 .

0.04742 0.04712 - 3000 I
10 0.69200 0.59080 0.57210 2000 2.6Z

0.67330 0.50260 - 3000 -0.2 -- 489
11 0.06221 0.06521 - 2000 0 .44

0.06170 0.06214 - 3000 4.00-. '-2.67
12 0.01870 0.02101 - 2000 0.44

0.01833 0.01942 - 3000

SNVE: Smallest Non-Vanishing Eigenvalue method, Eq. (22). -0 I. 6 0 0 2
2) CSSR: Chandler's Steady State relaxation Rate, Eq. (43). 0.6 0.0 0.6 1.
3) KSSR: Kramer's Steady State relaxation Rate, Eq. (45). X

Fig. 2

correspond to a linear reactton coordinate while cases 5-8 Contour plot of the potential energy strface of case 3 with arrows
and 9-12 represent two groups of situations with curved indicating the direction and magnitude of the steady state reactive

reaction coordinate. Some of the cases (2,6 and 10) corre-

spond to a small barrier hight (fly'o = 2) where the experi-
mental reaction rate is not well defined. For the other .aseh the same order as the numerical accuracy of the results). It
P/Vo = 6. Finally in cases 1,2,5,6, and 9,10 the diffuston ten- should be noted that the numerical accuracy is also consid-
sor is isotropic while the other ,ases correspond to non erabl, better for the high potential barrier cases where the
isotropic diffusion. smallest non-vanishing eigenvalue is well separated from the

From Table 2 we see that good agreement betueen the higher eigenvalues (or "here the saturation region in
two numerical procedures considered in this paper exists in Eq. (29) is %ell defined). In these .aseb we he found that
all cases wvhere the rate is well defined (discrepancies are of at time 2000 (time units correspond to a = D - D, 1)
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Y 0.0-

ODA

-0.4-_______________

-0" 0.67 -0,5 -0.25 0 0.25 0.5
-4.flux at X'

Y
I I I0- -0.6 0.0 0.6 1.2

Fig,3 X
Same as in Fig, 2 for case I I

the error was less than 3%. The Kramers result also works
reasonably well when applied to the isotropic cases (in fact
its success for cases 2,6 and 10 (fiVe = 2) is surprising, and
i probably fortuitous.

Consider now the effedt of curvature on the reaction co-
ordinate and of anisotropy on the diffusion tensor. These
issues have been recently subjects of several studies. A recent
study [6] of the effect of the reaction path curvature in the
overdamped (Smoluchowski) limit of the Kramers problem
has shown that for isotropic diffusion (and isotropic poten-
tial wells) the curvature of the reaction coordinate plays no
direct role in the reaction kinetics, as is intuitively clear since
this kinetics is dominated by the flux across the saddle point.
Still Matkowsky et al. [6] have shown that the pre-expo- II
nential factor in the reaction rate may be modified by the -1.0 -0.5 0.0 0.5 1.0
diffusion in direction(s) normal to the reaction coordinate, flux at X =0
and thus may account for part of the difference between the Fig. 4
result based on the (essentially one dimensional) Kramers The reactive flux along the y axis, at x = 0 vs. position.
expression and the numerical work. (Note that the Kramers (a) case 3; (b) case 1I
result is the lowest o'rder term in an expansion in powers of
(piVe)- 1, so corrections are expected even in one dimension). comparison between the analysis of this situation and the

Of more interest is the effect of non isotropic diffusion, numerical work to a later publication. Here we note that
particularly when the reaction -oordinate does not coincide this case correspond to D, > Dy (cases 3, 7 and 11) and is
with a principal axis of the diffusion tensor. (Cases 3 and 4 characterized here by the fact that the reactive flux across
correspond to situations when it does). Kiosek et al. [8,9], the ridge (j 0 ) between the two wells is not necessarily the
as well Berezhkovskii and Zitserman [10,11] have shown largest at the saddle point. To see this we have plotted in
that a qualitative difference exists between the cases where Figs. 2 and 3, superimposed on the potential surfaces cor-
the second derivative A of the potential at the saddle point responding to cases 1 (3,4) and 9(11,12) respectively, arrows
in the direction of fast diffusion is larger or smaller than w hose direction and length represent the dire%;tion and mag-
zero. When A > 0 the large potential barrier and large dif- nitude of the reaition flux. The latter is obtained from
fusion anisotropy are interchangable, and a trivial general- - I
ization of the Kramers problem applies. When A < 0 the Jx (x,y,t) -D + p-' P(x, Y,0 (52)
situation is much more complicated. We defer a detailed lax ax
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Interrelations of Different Methods for the Determination of Rates: Flux
Qver Population, Generalized Reactive Flux, the Lowest Eigenvalue and Its

Rayleigh Quotient
Peter Talkner

Paul Scherrer Institute, CH-5232 Villigen

Nonequilibrium Phenomena / Reaction Rates / Reactive Flux
The ratio of Kramers' current carrying stationary probability density and the equilibrium probability
density is utilized as smoothed characteristic function in the generalized reactive flux method recently
proposed by Borkovec and Talkner [3. Chem. Phys. 92, 5307 (1990)]. Under a certain condition on the
potential, as generalized transition state rate Kramers' phase space diffusion limited rate is obtained. It
then represents an upper bound for the true rate. An approximate expression for the plateau value of the
generalized reactive flux yields a Rayleigh quotient for the lowest eagenvalue of the considered Fokker

Planck process.

1. Introduction with local minima corresponding to an initial reactant and
The generalized reactive flux method [1] primarily aims a final product state. The reactant state x, < 0 is separated

at the effective numerical simulation of rate constants [2] from the product states x, > 0 by a barrier located at Xb = 0.
for those classes of dynamics as e.g. Smoluchowski or jump The vicinity of the barrier is assumed to be parabolic with
processes that cannot be tackled by the original reactive flux curvature -od:
idea [3]. This goal was achieved by the use of a smoothed
characteristic function from which the reactive flux is de- U(x) - M 2 ~- + NO) for x near the barrier (2.1)
rived in contrast to a discontinuous one for the original 2 x

reactive flux method [1]. In this note it will be demonstrated
that the same idea may lead to an important improvement Under these conditions Kramers could construct a station-
of the initial reactive flux rate compared with the transition ary Fokker Planck equation in the parabolic vicinity of the
state rate. For the sake of simplicity this discussion is re- barrier:
stricted to the 6riginal, one dimensional Kramers' model
[4]. The generalization to higher dimensional models is Lp(x, t) = 0 for x near the barrier (2.2)
straightforward. From Kramers' solution for a current car-
rying probability density one finds a smoothed characteristic
function for which the initial reactive flux rate already yields a a tU'(x) kT b2

Kramers' phase space diffusion limited rate. The initial con- L = - + ++yv) + M - (2.3)
ditions for the individual transmission factors that lead to T V M v

the time dependent reactive flux rate, are given by the
sources and sinks that render Kramers' current carrying and where y denotes the friction rate and T the temperature
solution stationary [1,5]. In order that these initial condi- of the heat bath causing fluctuations and dissipation.
tions follow from proper nonnegative probability densities, The solution p is given by the product of a form-function
the nonlinear potential which is obtained from the original (x,t') and the equilibrium Boltzmann distribution pcq(X,v)
potential by subtracting the barrier part must be convex.
Under this condition it is sure that Kramers' rate is an upper p(x,v) = (x, v) p, (x, V) (2.4)
bound for the true rate. In an appropriate limit an exact
expression for the plateau value is obtained that deviates
from the smallest eigenvalue of the considered Fokker- p~q(x,v) = Z- I e- t "lV 2 + tX))i. (2.5)
Planck process only by an exponentially small amount. An
approximate calculation of the plateau value leads to a Ra). The form funLtion matLhes smoothl) the equilibrium dis-
leigh quotient for the smallest eigcn~alue .Nhwh is different tribution in the initial %ell kith a ,anishing probabilit) den
from previously used ones [5]. sity at the product state. It is given by [4]

2. Kraners' Modei C(x,v) = cob(M/21tykBT).+) 1
1
2  (2.6)

As a model of a chemical reaction Kramers [4] considered I e 2 ;' du
a Brownian particle of mass M moving in a potential U(x) X r'

Ber. Bunwenge,. Pi). Chem. 95 1991 , Nvo. 3 L , CH ; erlag ¢yoeljhfl mbH. II -6940 II einheun. 19y LJIJL5921,103t3.QJA' S 3.5o --. 5, 0
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-where Moreover, we note that the operator L* is just the adjoint

/ ( 2 12 operator of the backward operator L + of the original proc-

+= - -- + o + . (2.7) ess.with respect of the scalar product defined by the equi-
2 2 librium expectation value

The stationary solution p (x,y) carries a probability current (fL + g> = <g L*f> (2.16)
oyer the barrier that follows from

where

J= 0 dvvp(x=O,v). (2.8) <f>= S dx I dvf(x,v)pq(X,V) (2.17)
-0o -Co

This flux is maintained by sources and sinks which are given and
by[1,5] a ( '(x) a ykBT 2

S(x,v) = -Lp(x,v) (2.9a) L= v--- - + Y V)-- + M 2 (2.18)

a (In the next Sect. we shall discuss the generalized reactive

-( 21T~~kB TY 2 V'(x) e 2rkT -7 (2.9b) flux method for this classical model.

3. The Generalized Reactive Flux Method
where V(x) denotes the nonlinear part of the potential re- After a transient on a microscopic time scale -m, the re-
sulting from the full potential U(x) subtracted by its para- action rate governs the time behavior of the correlation func-
boic contribution (2.1) tion

2()=U(N MCl ,-UO (2.10) <f(x,v) 0(- X(OD)
V(x) = U(x) + -Mw x2 - U(0). C(t) = <f(x,v)O(-x)> e_' (3.1)

Kramers' phase space diffusion limited rate kk, is then readily where <> again denotes the equilibrium average. 0(-x) is
obtained from the ratio of the flux given by Eq. (2.8) and the step function being unity for negative and zero for pos-
the population n of the well itive values of x. In contrast, f(x,v) is a function that

S(. smoothly interpolates from unity in the phase space region
kk, = n (2.11) of reactants to zero in that of products. In order to avoid

back reactions, phase space regions of products must be

4 co (2.12 absorbing.= ob e- (2.12) The time derivative of Eq. (3.1) yields a-time-dependent
expression:

where Eb = U(0) - U(xo) denotes the barrier height and dC(t) _ O(-x(t)) L* f(x,v)>

o k(t) = d <f(x,v) O(-x)> (3.2)
n = dx I dvp(x,v). (2.13)

-0 In order to obtain this result, one expresses the time de-

This result represents a reasonable estimate of the true rate, pendeii part O(-x(t)) formally by

if all trajectories ejected by the source properly thermalize
before eventual thermal fluctuations drive them out of the (x(t)) = eLtO( -x) (3.3)
initial well [1,5]. and, after differentiation with respect to t, uses Eq. (2.16).

We conclude this section by noting that the action of the In a standard way the generalized transition state k(0)
Fokker Planck operator L on a product of a functionf(x,v) and the transmission coefficient K(t) are introduced:
and the equilibrium distribution can be expressed by an-
other operator L* acting solely onf: k(t) = k(0) Kc(t) (3.4)

LfpN = pNL*f. (2.14) where

The operator L* coincides with the backward operator of k(0) = - <0(-x) L*f(x, v)> (3.5)
the time reserved process [7,8] <f(x,v) 0(-x)>

0 (.U'(x) 0 kT and

L * = - v -v- + M - ) + BT (2.15)
ax M 3V M v (21 (t) = \O(-x(t))>+ - <O(-x(t))>_ . (3.6)
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The nonequilibrium initial states p± by which the expecta- for any admissible choice of f(x,v) the generalized reactive
tion values <(-x(t))> . are determined, read flux rate is an upper bound for the true rate

SO(Fx) p. (x,v) L*f(x,v) (37) k(0) : k. (3.16)
<0(6:Fx) L*f(x,v)>

From the above consideration we find that a sufficient con-
In order that p± are nonnegative probability densities, the dition for the Kramers rate to be a bound for the true rate,
function f(x,v) has to be properly chosen. The best choice is the convexity of the nonlinear potential. This is certainly

would be the eigenfunction iF(x,v) of L* with the smallest too strong a condition. Forexample, for a cubic potential
eigenvalue -A: U(x) = Mob x2/2 - ax'/3, a > 0 one can modify Kramers'

v AF(xv) . (3.8) form function for positive values of x such that one obtains
proper probability densities p,, ,without a change of Kra-

With this choice, the time dependent rate k(t) varies exclu- mers rate. Consequently, still in,.cases where V(x) isnot

sively on the long time scale, determined by the inverse rate convex, the Kramers rate may be an upper bound.
Recently, Pollak et al. [9] obtained the weaker condition

k(t) - ).e - '. (3.9) that V(x) must be nonnegative in order that kk, be an upper
bound.

Hence, the generalized transition state rate already coincides
with the true rate A 4. The Plateau Value

k(0) = A (3.10) The time dependence of the reactive flux rate is deter-
mined by the propagator e-' see Eqs. (3.2), (3.3), and results

However, the eigenfunction R and the corresponding eigen- finally in an exponential decay proportional to eAt; where

value -A are not known exactly. -) is the smallest eigenvalue of L* and, with Eq. (2.16) also

As an approximation Kramers' function (x,v) suggests of L +.In order to compensate for this decay, one may mul-

itself because first, it shows the desired qualitative behavior tiply the reactive flux rate (3.5) by eA'. Then, in the limit

and second, approximates the eigenvalue Eq. (3.8) in the t- oo, one obtains for the plateau value kp1 of the reactive

important barrier region [cf. Eqs. (2.2), (2.4) and (2.14)) flux rate

L*C(xv) = 0 for x near the barrier. (3.11) k1 = lim k(t) eA'I" O (4.1)

With Eqs. (2.5), (2.6), (2.15) and (3.5) we obtain for the gen- (h(xv) L*f(x,v)> <i(x.v) O(-x)>
eralized transition state rate k(O) Kramers' phase space dif- (f(x,v) 0(-x)>
fusion rate (2,12)

k(0) = Ic1k. (3.12) where the fact is used that e(tL+')' in the limit t-- co projects

onto the eigenspace of L+ belonging to the smallest eigen-

Combining Eqs. (2.5), (2.9), (2.14) with Eq.,(3.7) we obtain value -2:
for the initial distributions p+ and p- the normalized pro-
jection of the source and sink density (2.9) on the reactant lim eL* +*), = PA. (4.2)

and product phase space regions, respectively: 1- *

O(:Fx) S(xv) The projection operator P, may in the usual way be con-
= O (x S"0~ v) (3.13) structed from the right - and left - eigenvectors of L+:

J dx S dvO(Fx)S(xYv)
-01 -0o L+Ih(x,v) = -2h(x,) (4.3a)

From (2.9b) we immediately find that the functions p± are L*r(x,v) = -. (x,v) (4.3b)
nonnegative if the nonlinear potential V(x) defined by
Eq. (2.10) is a convex function where

"(.) __ 0. (3.14) h (hx,v) if(x,v)> = I (4.3c)

Under this condition, the Kraniers' form function (x,v) is
an admissible choice for the reactive flux functionf(x,v). and where we have used that L' and L* are adjoint to each

Since, as for the original reactive flux, for proper nonneg- other [see Eq. (2.16)]. Since L + and L* are further connected

ative p± the expectation values fulfill the obvious inequali- by time reversal [compare Eqs. (2.15), (2 18)] h and hf are

ties also connected by the time reversal transformation:

0 < K(-x(t))>_ < (Ok-x(t))>+ < 1 (3.15) 1F(x,v) = h(x,-v). (4.4)
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Using Eqs. (2.16) and (4.3 a) one obtains from Eq. (4.1) for perature corrections [11], whereas the expression (4.9) fails
the plateau value k., -to give the correct behavior, for small friction constants Y,

because then the Kramers form function does not ade-

kpi = A <f(5,v) h (x, vO(x, v) 0) (4.5) quately approximate the eigenfunction iF(x,v).
OfX, V) 0 (- X)>

Conclusions
All three factors <f(x,v)h(xv)>, (~(x,v)O(-x)>, and

<f(x v) 0(- x)> deviate from the population of the well only In this note the generalized reactive flux method is applied

by factors of order 1 - e- 1 /'r.Hence, as one expects, the to the original Kramers' model. It is shown that under the

plateau value of the reactive flux rate coincides up to ex- condition of a convex nonlinear potential Kramers' phase

ponentially small corrections with the smallest eigenvalue of space diffusion rate may be obtained as a generalized tran-

the Fokker Planck operator. sition state rate. It is then an upper bound for the exact fate.

Since, however, the exact eigenfunctions h and hf are un- Further, it is demonstrated that the crucial modification of

known, one can try to evaluate the expression (4.1) for the the reactive flux function from a discontinuous to a smooth

plateau value of the reactive flux with the help of an appro- characteristic function does not change the plateau value of
priate rof test functions h(x,v) and (Xv), that one may the time dependent reactive flux rate which is given by thepriate pair stet funxtion lowest eigenvalues of the Fokker Planek operator. The Ray-

choose consistently with the reactive flux function flxv): leigh quotient that follows from the expression for the pla-

,(x, v) tcau value allows for the nonselfadjointness of the backward
ho(x.v) = <f(x,v)f(x,v)>"2  (4.6) operator as it contains two different test functions.

The generalization of the demonstrated method to higher

where [see Eq. (4.4)] dimensional systems with detailed balance is straightfor-
ward. In principle, the generalized reactive flux method may

Av. v) = f(x. - V) (4 .7) also be applied to problems without detailed balance. The
main problem then consists in the determination of a sta-

and where the normalization is given by Eq. (4.3c). if(x,v) tionary state corresponding to the thermal equilibrium state.

follows immediately with Eq. (4.4). For the plateau value kpi The author gratefully acknowledges valuable discussions with
one then obtains a Rayleigh quotient for the smallest cigen- Mischa Borkovee, Peter Hiinggi, and Eli Pollak.

value of L*:
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The Kramers Problem in the Turnover Regime:
The Role of the Stochastic Separatrix

M. M. Klosek' ), B. J. Matkowsky 2), and Z. Schuss2 '3 )

Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
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We consider theproblem of activated escape of a Brownian particle from a potential Weit,: We find the
stochastic separatrix S (the locus of starting points of the phase space trajectories which have equal
probabilities of ending up inside or outside the well) for (i) the extremely anisotropie overdamped motion
of a two-dimensional Brownian particle in a bistable potential, and (ii) the damped and uniderdamped
motion of a one-dimensional Brownian particle in a single metastable state. The significance of S is that
(1) it defines the reactant and product wells in a natural though not necessarily intuitive way, and (2) it
reduces the calculation of the escape rate to the solution of the stationary Fokker-Planck equation inside
S, with absorbing boundary conditions on S. Finally, employing this approach we derive an expression
for the Kramers escape rate which bridges uniformly between Kramers weak damping regime and tran-

sition state theory.

1. Introduction vation rate in several problems described by the Langevin

The correct description of the transition state (TS) of a equation. We describe analytically the stochastic separatrix

diffusive activated rate process with a- (single) metastable S, the locus of starting points of the phase space trajectories

state, and of the stochastic dynamics in the neighborhood which have equal probabilities of ending up inside or outside

of the TS, is crucial for the understanding of the activation the potential well. Thus S isitaken as the definition, of the

process. However, descriptions of this behavior for diffusion TS.

processes (see e.g. [1 - 16J) do not seem to be complete. There are several important applications for S. Obviously,

Indeed, the behavior of the stochastic trajectories near the the escape rate K,, from the domain bounded by S is twice

TS has often been assumed, rather than derived from anal- the absorption rate Kxb, in S, which explains the factor 1/2

ysis of the underlying diffusion model. For example, a fre- in the relation between K,, and the mean first passage time

quently used assumption in Kramer's problem [1] is that to S [8]. The analytical and numerical calculation of K'.

trajectories do not return from the TS (see e.g. [2]). When can thus be reduced to that of calculating the first non-zero

applied to the stochastic trajectories of the Langevin equa- eigenvalue of the forward or backward Fokker-Planck op-

tion, although correct in the extremely underdamped regime, erator inside S, with absorption in S. It also defines the

as shown below, it does not hold for higher values of the reactant and product wells for bistable damped models in

damping coefficient y [1]. Analyses of stochastic trajectories a natural, though not necessarily intutitive way, indepen-

near the TS (see e.g. [6,7,10-12]) also do not provide a dently of the ridge R of the potential (see Fig. 1), and so on.

complete picture. In particular, an adequate theory of the Therefore the determination of S is of considerable impor-

return probability in the transition region between the un- tance.

derdamped and the .transition state theory range of y, which We determine S in two classical examples. In Section 2

must be taken into account in the calculation of the escape we consider the case of a two dimensional anisotropic bist-

rate, has not been developed. This issue did not arise in [3] able Smoluchowski system. We show that depending on the

and [4], where the Langevin description was replaced by relative sizes of the anisotropy parameter 6 and the dimen-

one based on a Hamiltonian of a particle in a bath of har- sionless temperature e (measured in units of the well depth),

monic oscillators, thus changing the formulation of the dif- either S = F (e.g., if 6 > ) or S is an altogether different
fusion problem posed by Kramers. In addition, because of curve (if 6 < a), depending on the geometry of the potential

the choice of normal mode coordinates in [3,4], the sto- near the saddle point M. While in the first instance S passes

chastic phase space trajectory of the particle near the TS through M, in the latter it may not. This explains the non-

was not described, saddle point activation energy predicted in [9-12]. It also

The purpose of this paper is to clarify the behavior of the shows that S is not always close to F when c is small, as

random trajectories near the TS and to calculate the acti- implied in [6]. If however 6 = 0(1) and c < 1, then S = F,
as asserted in [6] and [8]. The proof that S = F for a < 6
is the same as that for the classical Kramers' problem of

1 Department of Mathematical Sciences, University of Wisconsin- activated escape of a Brownian particle from a metastable
Milwaukee, Milwaukee, WI 53201. state for c < 7. The Langevin equation in this case is given

2) Department of Engineering Sciences and Applied Mathematics,
Northwestern University, Evanston, IL 60208. in dimensionless variables by

-) Department of Mathematics, Tel-Aviv University, Ramat-Aviv,
Tel-Aviv 69978. Israel. - + V'(x) = w 2N'. (1.1)

Ber. Bunsenges. Ph)p. Cham. 95 1991, Av. 3 1 t CH I erlayssdlshaji inbil. It -69401 f heuni, 1991 VW5-9U021, 91,0303-0331 5 3.50 * .25,0



332 M. M. Klosek et al.: TheKramers Problem in the Turnover Regime etc.

where-*is standard Gaussianwhite noise. Weassume that potential V(xi,x 2) [10,13]. In dimensionless variables the
V(x)has,a single'local minimum (maximum) at XA(<Xc). dynamics is given by the Smoluchowski equations
The domain-of attraction D of the stable point x = XA, =0
in- phase space is bounded by a separatrix F, which- in this 3V
example is determined by-the solution of X, = - 0- +  (2.1)

8V= , =-' 'x,(1.2) ;2= 6 + V 62

which converges to the saddle point x = xc, y =0 as t-- oo. where 6 is the anisotropy parameter, and 01, 02 are inde-
We set oA = V'(XA) and co - V"(xc). Kramers' expres- pendent standard white noises. The bottom of the reactant
sions for the escape rate from D are: (product) well is at a = (XIa,X2a) (b = (Xlb,X2b)). The do-

mains of attraction Da and Db of the wells a and b, are

VO)AIC separated by a separatrix r, which is the curve determined
Kud = - e-'VI for y < s < 1, (1.3) by the noiseless dynamics ((2.1) with s = 0) which converges

27rc to M as t-- oo. In the isotropic case 6 = 1, F = R, where.R
is the ridge of the potential surface (see Fig. 1).

where Ic is the action of the motion on the critical energy

contour E = E, V(xc) and AV V(xc) - V(xj), and

x2
kr,. = QK,t for y , (1.4)

-R ,F
where .- - --- ------

2coc D

SM
and where the transition state theory rate K... is given by s

Obviously 0 - 1 if y < Oc, so that Kkr reduces to K,,in this

limit, rather than to Kud, as it should. This leaves a gap
between the expansion of the escape rate in the extremely
underdamped region y, <a s 1 and the TST region
C«<V«O< c.

In Section 3 we show that for - < 6 in a two-dimensional Fig. 1
anisotropic Smoluchowski problem, as well as in Kramers' Double well potential for (2.1). M, R. r and S denote saddle point,

problem in the limit (1) ac- 0, y = 0(1), the stochastic se- the ridge, the deterministic and stochastic separatrices respectively.

paratrix is the deterministic separatrix S = F. In Section 4 The dashed curves represent level curves of V

we show that in the limit (2) y,--- 0, S is the constant energy
contour E = Ec - slog2, thus solving the problem cited in If however 6 < 1, F differs considerably from R. The direc-
[7]. In Section 5 we find an asymptotic expansion of S in tions of R and F at M are shown in Fig. 1. If the local
the range of parameters (3) e < 1, y 4 cOc, which includes expansion of V near M is given by
the range where e and y are comparable, and which bridges
between (1) and (2). Finally, in Section 6 we derive an ex- I 1I 2
pression for the escape rate in the region (3), which bridges V(x,,x 2) ": -- Ax + Bx x. + -T Cx2 + (2.2)

between Kramers' expression (1.3) in the limit (1) and the
TST expression (1.6) in region (3). the scenario depicted in Fig. I corresponds to A < 0.

Let Q,(b) be a neighborhood of a(b), deep inside the re-

2. The Stochastic Separatrix for an Extremely Anisotropic actant (product) well and let p(x, x2) be the probability that

System a trajectory of (2.1), starting at (xl,x 2), will hit 2, before it
hits -b. For a trajectory that starts in the reactant well and

We first consider the extremely anibotropic overdamped reahes the point (k,.,)xJ, p(Akx) is the probability of return
motion of a to dimensional Brovman partide in a bistable from (Axz). The curie defined by p(x,,x. = 1,'2 is the
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stochastic separatrix S. The function P (xi, x2) is the solution considerably from both F and R. The reactant and the prod-
of [14] uct wells for an extremely anisotropic (6 < c) chemical re-

action described by (2.1) [13] are naturally defined as the
- V Op a2p domains on either side of S, rather than the domains on

Lxp + 6L~p Ox1 Ox1 + eithersideofRorr[9-13].Thus the physically meaningful

r p 1 23p) separatrix is neither F nor R [9-13], but rather S. Other
+1 x2 -x2 X22 0 cases will be discussed elsewhere.

with the boundary conditions 3. The Stochastic Separatrix for e-*0
We now consider (2.1) in the limit 8--*0 with 6 = 0(1) as

p(x1,x2,).= 1 if (x1,x2) G (, (2.4) 'well as (1.1) in the limit c--O with y = 0(1) and prove that
p(XIx2)'= 0 if (xA)E 6892b, (2 in these limits S = F. These problems were considered in
p(x1 ,x2) = 0 if (x1 ,x2) G 0 b, L6] [7] and [17], however the argument in [6] does not

cover all cases, as may be seen, e.g., from the simple example
where 0 and 0(4 are the boundaries of (o and (4, re- of adrift which vanishes on F (constant ridge height). For
spectively.If 6 < c, we expand definiteness we:present the proof for the Langevin equation

(1.1). The proof for (2.1),is exactly the same. Let (, be a
p ,. pO + 8p1 + ... (2.5) neighborhood of the stable point (XA,0), and (4 be the half
a1A obtain plane x > xB, where xB is 6hosen so that xB > Xc. The prob-

ability p(x,y) that the particle, initially located at (x,y) will
hit D0, before it his 0f2b, is the solution ofLop ° - 0 (2.6)

Lop1 = -Lip', (2.7) Lp - +, Y (=+ V'(x))- (3.1)
P y0  2 + Y ax YY + O.y

and so on. From (2.6) we obtain that p0 is independent of
x,, and from (2.4) we obtain that p0 = 1 (0) in the strip outside Q,( and (4, with the boundary conditions
S, (Sb). Next we determine p0 in the strip SM (see Fig. 1). The
solvability condition for (2.7) is that the right hand side is p = I on 0(4 , p = 0 on 0(4. (3.2)
orthogonal to the solution exp(- V/c) of the homogeneous
problem for L* (the one-dimensional Fokker-Planck oper- The outer expansion
ator). Thus

d2p0  dV (x2,) dp 0  p = p0 + o(1) as c 0, (3.3)

Sdx2- dx, dx 2  implies that on the trajectories (x(t), y(t)) of (1.2) we have

(see Fig. 1) with the boundary conditions p0(x(t), y(t)) = 0, (3.4)

p (x ) = 0, p (4) = 1, (2.9) dt

where so that po(x(t), y(t)) = const. on each such trajectory. Since
trajectories that start inside (outside) F reach DO,, (the line
xB), we have by (3.2)

Vef(X2, 1) M -clog J e- '(VX2)Ie dx,. (2.10)

p0 = I inside F, p0 = 0 outside r. (3.5)
We consider the case that V" has two minima, and achieves
its local maximum at a point xm(c) in the interval (x;,x"). The outer solution po is discontinuous across F. Therefore
The solution of (2.8) and (2.9) is given by we construct an asymptotic solution in a layer about F, to

smoothly connect the solutions (3.5). We change variables
X2 e- " . dx 2  in (3.1) to (x,pO, where

p= X! (2.11) ZWxQI e- (.11)2 = , p ) dist((x,y),F), (3.6)

Clearly, limp' = 1(0) for x2 > (<)xm(0). Thus S, the locus and Z(x) is a solution of the Bernoulli equation

of points (xi, x2) such that p(xI,x 2) = 1/2, is given to leading
order in 6 and & by x2 = xm(0) (see Fig. 1). Note that S differs y, (x)1'(x) + bo(,)/(x) = ,o (x,jI (x)),Z)-1,/, (3.7)
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that satisfies the initial condition For E < E, weaverage,(3.1) over constant energy contours,
to obtain

X(xc)(E) + T(E) 0o) - 0(E)-.E- = (4.3)

Here

bocc (3.9) )-,where the action I(E) and the period T(E) of the undamped
bo (Xc) " + 2 , (3.9) noiseless motion on the constant energy contour E, are given

by
-where

). = , a:. V 2+4co !.dx
= .- . (3.10) I(E) = y dx, and T(E) = I'(E) = .-. (4.4)

(see [5], Eqs. (2.23)-(2.29) or [15], Eqs. (5.26)-(5.45)). Set- We choose aQa to be the contour E = E, < E,. The bound-

ting p(xy) - P(x,p) and expanding ary condition for p0 is given by

P(x,p) = P°(x,p) + o(1) for c, 1, (3.11) p°(xy) = I on E = E , (4.5)

and the matching condition is that the solution of (4.3)
we obtain the leading order boundary layer equation matches with the outer solution (4.2) as E - E,, which itT.

plies that
2p 2 yr(x) +P 0, (3.12)

-- - p Q+ -(x,0)X 2(x) ax p(x, y) =.0 on E = E,. (4.6)

with the boundary and matching conditions The solution of (43), (4.5), and (4.6) is

lim- P0(x,tjI) = 1, lim P0 (x,1t) = 0. (3.13) r e t  ' (E, e$Ie (
P'" 00--00 p0(x,y) = 11 S' dsl/l dsJ for (x,y) eE. (47)

Here e 00/Oy. The solution of (3.12), (3.13) is [17]
Note that the matching condition (4.6) implies that trajec-

2 ~ tories which reach E, are unlikely to reach OI2a before 00b,
PO(x,= 1 I e-$' ds. (3.14) i.e., are unlikely to return.

2-n -C0  Now we use (4.7) to find S, by finding the value E,1 of E,

for which

Thus if (x,y) e F, then e(x,y) = 0, so that/t = 0, and (

1 1
P0(x 0) = 7 e 1-e (3.15)

2n - 2 (3.15) Since for small e the main contribution to the integrals in
(4.7) come from E = E,, we obtain to leading order in a

It follows that S = Finthelimit c 0for, = O(1)[6-8, Es= E1 . ~ E,-elog2 for c < I . (4.9)
17].

Thus in the limit y--, 0, S is the contour E = E1a. Obviously,
4. The Stochastic Separatrix in the Extremely for y 0 0, S lies between the E12 and F. Particles whose

Underdainped Kramers' Problem energy is higher than E, - clog2 have a probability of at

Next we consider (3.1) for 7 < f < 1. We expand least 1/2 not to return to the well, contrary to commonly
held beliefs. Obviously as y increases, the probability of re-

p(x,y) - p°(x,y) + o(1) as y --* 0, (4.1) turning from the barrier top to the well increases continu-
ously from 0 to 1/2.

and obtain that po (x,y) is constant on constant energy con- Note that for E close to E,, I(s) is close to I, the action
tours. Thus for every (x,y) such that E = y2/2 + V(x) > E,, of the motion on the critical energy contour E = E,, so that
the outer solution is (4.7) implies that

p0(x,y) = 0. (4.2) p0 (x,y) - 1- e- , (4.10)
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.where with the initial'and boundary conditions

E(4- E- Q'(O,) + Q'(0,ii) = 0 for q/>0 (5.8)

and
Thus, in a layernear E,, the probability p0 (x,y) as a function
ofQ, satisfies Q0( ,0) = 0, and QO(,q) 1 as qi-- oo. (5.9)

p¢ + pC = 0. (4.12) The solution is given by

This fact is used in the next section. Q. 1 2 dz
Q0(Ni 7 IT e- d

Ir0
5. A Uniform Expansion of the Stochastic Separatrix in e'l+4  e d

Kramers' Problem .+ - j e-:'/ dz
In Sections 3 and 4 we found S for s << y and for y <. c, 727c 127 (5.10)

respectively. Here we determine S in the range where y and e-+ e -  dz = R' (1,2)
s are comparable. Comparing (3.14) with (4.7) we see that i/ V 2v-4 1/2i4

neither is uniform in c and y, since they do not reduce to
one another in the appropriate limits. Therefore we now + R2(,?) - R3( ,t).
construct a boundary layer to connect the outer solutions
(3.5) in the parameter range where c and y are comparable. Next we show that in the limits y < & < 1 and c < y <
We introduce in (3.1) the-variables (oc, (5.10) reduces to the results obtained in sections 3 and

4, so that (5.10) provides a uniform expansion of the prob-
E, - E _ ability p(x,y).

S = - Ir(x) (5.1) First we consider y < , which corresponds to -0 in
(5.10). Obviously, in this limit the initial condition (5.8) is

where recovered, so that

=I yr(x)dx (5.2) QO(, 'q Q0(0,i/) = -e -  -I e-( - )c. (5.11)Itw J r~x)x(52
XC

Setting
is the (negative) action of the motion on ' between the 1
points xc and x. Setting p(x,y) = Q( ,C) in (3.1) we obtain QN( ,q1) T 2 (5.12)

2c(C +) we obtain
Y (5.3) Es = Er- log2 = E-/yIr(x)- elog2. (5.13)

Matching to the outer expansion implies that Clearly, (4.10) is recovered as y-* 0, and (5.13) also provides
a first correction term to (4.10).

Q( ,)0 = 0 for C + = 0, C < 0 (5.4) Next we consider c <4 y, which corresponds to o. It
is easily seen that R2( ,tI) and R3( ,t1 ) in (5.10) vanish, so

and that R'( ,ij) determines the asymptotic behavior of Q°( ,,j),
which agrees with (3.14). To determine S in this limit, we set

Q( ,C)-*1 as C - oo . (5.5) R1( ,ij) = 1/2. There exists a value zji2 such that

The initial condition at =0 is obtained as follows. The 2 ',e0 , --C " e - 12  d z ( 5 1 4limit -0 corresponds to y- 0, so that in this limit Q(0,) = 2
must agree with (4.10). Thus (4.12) implies the initial con-
dition

Therefore S is determined from the equation

Q-tQ(1- =0 for =0. (5.6) (Q C Y /27 = z , (5.15

Setting q C + and expanding Q = Q0 + o(1) we obtain or equivalently

1= Q for > 0, >0 (5.7) Es - Er - V28YIll(x)lzi2. (5.16)
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Cearly,,(5.16) reduces~to S = F in the limit c---0, and also By definition, th - probability current F and the total pop-
provides a-first-correction term in the expansion of S. ulation N are given by [I, 16]

We -note that in the two-limits considered, we obtain dif-
-ferent correction terms in the expansion of S, so that neither
one can.be separately used as a uniform expansion of S. F - yefj. dx - -2cy S e-' 0 ') dx (6.9)

and
6. A Uniform Expansion of the Activation Rate in

Kramers' Problem N Jjf dx dy ; 21 e_- (6.10)

Next we calculate the-escape rate from the relation D oA

I where D denotes the reactant well. Hence, by (6.1),
K .= 2 ' ~ , ,( 6 .1 ) .

-Yo A e - EI ') dx
where K.b, is the absorption rate in S. To this end we cal- s ay ev(,A.
culate the stationary probability density functionf(x,y) in- 2n
side S (in phase space), with a source at (xA, 0) and absorp-
tion in S. Thus f(x,y) is Green's function, for the Fokker- Next we consider (6.11) in the two limits, y < c and 8 < ,
Planck operator with absorption in S. Then From (5.10) we have

F (6.2) QO( ,q) - e" e- I2dz
N1 --, V +V4t,417 (6.12)

Where F is the total probability current on S and N is the + e " 2 dz.

total population inside S. The Fokker-Planck equation is V2 l'27V142,

given by The limit y < e corresponds to €-0 so that by (5.13),

Y'fjr - Yf + [(Y + V'(x))f] = -6(x -XA,Y), (6.3) Es - E, - flog2, the first integral in (6.12) vanishes, the sec-
ond integral tends to 1, and - q+ t - -log2. Therefore

with the boundary condition (6.11) reduces to

f(x,y)ls = 0. (6.4) V'WA Se -',ys (x) dx

The asymptotic structure of f(x,y) for small c is given by KW 2nee (6.13)
[15] AIc e_ AV for Y<&< 1,

2nc
flx,y) = eE'1tq(x,y), (6.5).

which is Kramers' result (1.3) in this limit.
wheie q(x,y) is the solution of (3.1) with the absorbing The limit e < y corresponds to --+ oo. As noted in Sec-
boundary condition (6.4) and the matching condition tion 5,

q - const. as c -- 0, (x,y) inside S - {(xA,0)} , (6.6) Q°(,?I) ,- R'( ,q) as c - oo, (6.14)

The function q(x,y) has an integrable singularity at the and it can be easily seen from (6.12) that
source. We note that although q(x,y) and Q( ,q) satisfy the
same equation Lq = 0 (see (3.1)) and the same matching Q'( , q) ,- R,'1( , q) as oo . (6.15)
conditions (6.6), the absorbing boundary condition for
q(x,y) is assigned on S, whereas that for Q( ,j) is assigned The boundary layer function R'(,i) is similar to P0(x,p) in
on F. However, since to leading order in & we have Q(,,,) (3.14). It has been shown in [5,15] that if Q°(.,ij) is replaced
= 1/2 on S, the function 2 Q( ,,)- I vanishes on S, matches by P0(x,p) in (6.11), then
to I away from S, and satisfies (6.4). It follows that to leading
order in .! >Q.* 2 as -)0, (6.16)

Ktst

q(x,y) ,- 2Q 0( ,ql) - 1, (6.7)
which is equivalent to Kc-,, -Ckk, for s < 1. In particular 2 -1

so that by (6.5) if/ <Cc, that is,

f(x,y) - e-E/(2QO( ,,I) - 1). (6.8) K,, -, Kt for c <' y < coc . (6.17)
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Therefore in order- to show that. (6.17).holds for K,,, defined hence (6.17). Thus (6.11) bridges betweeni the extremely
by,(6:1 1), it suffices to show that underdamped regime y <~ e < 1 and the TST regime

s < y < coc. A uniform approximation to the rateconitlant

~={2L j~x~e ~ 1, for e <~ y «W(c (6.18) isgvnb

S for (x,y) in a boundary layer mear the saddle point (xc,0) Kui = K (6.27)
(in particular for (x,y) e S, near (xc,0)). According to [5,15]

VA_- (see [2]), where 2 is Karmers' factor given by (1.5).
eyXxc,=)' (6.19)
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The mean first passage time to reach a noise induced state starting from a local minimum of the stationary
probability density is calculated analytically for the Stratonovich model exploiting a natural reflecting
boundary condition. Furthermore, the nonlinear relaxation time is calculated and compared Nith the
mean first passage time. The results are checked by digital simulation for typi%.al .alucb- of the parameters.
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1. Introduction paper we give an 'xact calculation of the NLRT for systems

The problem of dynamical properties of nonlinear systems driven by the DMP generalizing previous results for the
driven by colored noise is subject' of considerable interest LRT [20-22].
[1]. In this paper we consider the general nonlinear flow We consider the Stratonovich model in a parameter re-

gion where the stationary probability density

;el = f(x) + g(x,)Ii = Fo(xt), I, = A, a = 2(1) 2 II IP(x)=Nlxl- 1 11 Ixl-2A lx2-x,1 ° -

driven by-the dichotomous Markovian process (DMP) 1 22c = c/(a + (3)= a + o,

which jumps between the two values + A with the mean

frequency a. To be specific we investigate the Stratonovich (N is a normalizing factor) exhibits a noise induced local
model[2] maximum, i.e. for max {a/A -1, (A/a - a/l)/4} <a/

(2J) <a/I + 1 [3,4]. We investigate in Section 2 the MFPT
= axe - x + xI" (2) to reach the local maximum Xma, of P, injecting the system

at the local minimum xm,,
where a is the control parameter which (in the absence of
noise) describes a bifurcation of the stable stationary state Xax2.j=, {=( + 3a T [( - 2a)' + 5d2])2}/5. (4)
when changing its sign. A variety of physical phenomena
(some of them are listed in [3]), where stochastic fluctuations In Section-3 'we -calculate the NLRT characterizing the re-
of the control parameter around the mean value occur, is laxation of the system starting from Xmin, i.e. the decay of
modelled by (2). an unstable state (see also [29] and references therein) and

The full information about the dynamical properties con- compare the result with a MFPT.
tains of course the time dependent probability density which,
however, can be hardly calculated for nontrivial problems. 2 Mean First Passage Time
For the Stratonovich model, e.g., only the asymptotics is 2. M Fit Passag e t e
known [3]. The MFPT T 0(xo) to leave the first time a given interva

There are, however, characteristic times which can be cal- g starting at t = 0 with realization I .0 = c4 from x0 is
culated without explicit knowledge of the time dependent governed by
probability density, the mean first passage time (MFPT) and
the nonlinear relaxation time (NLRT). Whereas the MFPT 1 = F T. - a(T. - T_), a = - (5)
is the average of stochastic first passage times which are
needed in a representative number of realizations to leave where T,' is the shorthand for 0/0 x0 T.
a given interval, the NLRT describes the relaxation of the Eq. (5) is obtained in the simplest way by integrating the
mean trajectory starting far from equilibrium to its station- Kolmogorov backward equations over the interval f and
ary value. The concept of MFPT remains even meaningfull over the time span from 0 to 00 [4-14].
if no stationary state of the system exists. The boundary conditions depend on the nature of the end
MFPT's of non-Markovian processes driven by dichoto- points of the interval f under consideration. At an exit point
mous noise are investigated starting from the Kolmogorov- xE one imposes an absorbing boundary condition, i.e. if the
backward equation [4-14] or, alternatively, enumerating flow for the realization OlA of the driving process leaves the
the stochastic trajectories [15-19]. In the former approach interval at xr we have
boundary conditions characterizing the end points of the
interval have to be posed, The exit point is absorbing, the T" (xe) = 0. (6)
other end point may be reflecting [13] or absorbing, if it
coincides with the natural boundary of the support it is If the interval is bounded by two exit points we simply have
natural reflecting [14]. With these boundary conditions the two absorbing boundary conditions. A different situation
MFPT can be calulated up to quadratures [11 - 14,17], appears if the other end point coincides with one of the
These quadratures can be evaluated analytically in terms of natural boundaries x8 of the support. There the flow for the
hypergeometric functions of multiple arguments if the flow realization aBJ of the driving process vanishes, F, (XB) =
Fr,(x) is polynomial in x [14]. 0. Putting the system with 1, -0 = Cai at xB it remains there

The NLRT generalizes the formalism of linear relaxation urtil the driving process jumps to - aBJ which needs in
times (LRT) which describes the relaxation of correlation average the time 1,'a. Then due to the nonvanishing flow
functions in the steady state. For the LRT there exist exact FLoB(XB) the system is reflected into support. We call this
results for Gaussian white noise (GWN) [20] as well as for type of boundary condition natural reflecting [14],
the DMP- [21,22]. For the NLRT exact results are known
for GWN [23]. For the Ornstein-Uhlenbeck process (OUP) TB (XB) = 1/a + ToB (xB). (7)
approximative methods are available [24-27], only very
recently an exact result for the Verhulst model %Nab obtained In Fig 1. both t)pes of boundar) ,onditions are illustrated.
via the calculation of time dependent moments [28]. In this Mozt of the previoub %Nork deals %ith absorbing boundar)
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conditibns, only very recently the. case of immediate, reflec- where
'tion was-c6nsidered in some detail,[13]. There, in the ap-
pendix, a reflection with finite rates but of different nature z (x) = W+ - x 2)/x'+,z(x) (xW + - x2)/(x2+ - x_), (11)
'than considered here was also discussed.

and

Ti.. (x,) a.+ [2A+ )+.

n.n-o (2+ +l)m+(l + m+n)mn!

•zMI (xE)z + ' (xe) F, [1 +r+n, 1 -
+ 1,2 + m + n, zI (xe), Z2(XE)]. (12)

X_ X X, X+ X In Fig. 2 the MFPT to reach the local noise induced max-
imum of P,(x), stating from the local minimum of P,(x),
i.e. xr = Xmax and x0 = x,, ,, is shown as function of the

E(x.) 0 0(x+)= 0 mean frequency a of the driving DMP. The dominant effect
111 I ra!!, Iseems to be that the MFPT diverges as Xmax reaches the left

4 Iboundary of the support x- (cf. lower part of Fig. 2). This
is clear since the flow for I, = - Ai vanishes near the bound-

Sxary x- as ;, = -(x - x_) xL. Here, both initial and exit
_ support X, X points depend on parameters. Introducing (x0 - xe)/T+ one

Fig. I finds that this quantity systematically increases with increas-
Typical shape of the probability density in the considered parameter ing of, i.e. the noise induced state is reached as "faster" as
region, The system is injected at x0. We ask for the mean time the
system needs to reach xE. The boundary conditions at the end faster the driving processes is [14]. This agrees with the
points of the Interval f become obvious looking at the flow t , = tendency that the MFPT to reach a preassigned value in-
F,,(x,) which is shown in the lower part for the realizations , = . creases with increasing correlation time observed for differ-
(solid arrow) and I, = - A (opon arrow) ent models driven by several types of colored noise [6,30].

From (1) an equivalent first order equation for T"' is read-
ily obtained

&' F_ .T7 , + (F., F-_ 2 2qf) T, = 2 c. (8) \
The natural reflecting boundary conditions transform to

T.,, (x5 ) = - 21F-,.. (xe), T' (XB) = 0. (9) - -

Obviously, Eq. (4) can be immediately integrated up to 0
quadratures [4-14]. For F,,(x) polynomial in x of order a Q25 1.5
these quadratures can be evaluated analytically in terms of
hypergeometric functions of n-I arguments [14]. 0A)-0.6 1.6 2A

To be specific we now consider the Stratonovich model 5 P
(2) choosing a starting point x0 and an exit point xE < Xo so l[,,I
that the other end point of the interval is the natural right 0.5
boundary xB = x, (cf. Fig. 1). Then one obtains after
straightforward but length calculations [14] r

X. X+ X_ X+ X. X+

(xo) =] -

Fig. 
2

0C(2+1),,+,(I +)++,2),(1-2) MFPT T, (x,) for the Stratonovich model to reach the noise in-
, .-++)+ + +O,,I-)z! duced local maximum of P starting with a = + in the local min-

r,n-0 0)+ +2)re+n(l +in+n)n! i! imum. For a = 1.5, A = I we compare the exact result (solid line)
.Z' +' (xF [I + In + 1,X, - 2±2,2 against the noise parameters 0/(2A) with a digital simulation from

1 2(xo)Z+ )n-2 10realizations (full cirdes) and the simple appromimaton (13) (bro-
ken line). The lower part exhibits P,(x) for characteristic parameter

+ m+n, zi(xo),z2(xo)]+1/cl+ T_(x+), (10) values
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The'finite support (which results from the multiplicative After time integration weobtain
coupling of the noise and its, finite space of states) and the
peculiar, behaviour near its boundaries- make a steepest de- P, - P = L g, (17)
scent approximation, unfeasible where the finite boundaries
are replaced by infinite ones. Instead, a simple approxima- oo
tion is obtained from the rigorous result (10) as [14] where Q = ( 0. 0 2)T, 21 given by (15) and 02 (x) = dt

0

2 - 2[Q,(x) - Q,(x)]. We proceed integrating the first compo-

4,xN) 2 X + - x0 nent of (17) between one boundary of the support, say x_,
Xo -+ 2x'. x- x! (13) and x with the result

+2 2 1
+ --.E + /c

XE - XL G(x) = J dy(P,-Po) = -f(x) , x)-g(xLq2(x). (18)

The problem to calculate the MFPT to reach the local min-
imum x,,, starting from the local maximum xmax of P,(x) In (18) we have imposed that the probability flux
which is more close to Kramers' escape problem [31] (for.
a recent review see [32]) can be treated in a similar way. J,(x) = f(X)P,(x) + o(x)Q (x) (19)
The calculations slightly modify since then xB = x- and
X0 = Xmax < XE.

We furthermore mention that a-superposition of N in- vanishes at the boundaries xB = xt. Eq. (19) can be used
dependent realizations of the DMP scaled in an appropriate to eliminate Q2(x) in the second component of (17). We fur-
way gives in the limit N---* oo the Ornstein-Uhlenbeck proc- ther impose that in the stationary state the probability flux
ess. Already a finite sum DMP's (pregaussian noise [33]) vanishes everywhere, J, (x) = 0, and that there are no initial

models some characteristics of the Ornstein-Uhlenbeck correlations Qo(x) 0 0. Thus we obtain a closed first order
process. In this case the support is finite too, and stratified equation for 01 (x),

into regions which cannot be left for a given realization of
the pregaussian noise. At the boundaries of these regions 2 f g g-1 a, + 8 (F+ F_ -1 - 01) - - H(x), (20)
similar conditions as developed in this paper hold.

In the next Section we consider the NLRT which char- where H = 2a G/g + O ,(Gf/g) + Pf/g. Eq. (20) is readily
acterizes the relaxation of the mean trajectory (x,> to its solved up to quadratures as
stationary value a starting from x'm,. We compare the result
with the MFPT to reach xe = a0 starting from xo = xi,. Mx) = Psx) dy I(y)
TMp.r(Xo) = [T+ (xo) + T (xo)]/2. x (21)

3. Nonlinear Relaxation Time - I dz P,(z) J dy H(y)/E(y)1,
The NLRT of a function 0 (x,) of a stochastic process x,

ik defined as [34] the integration constant was determined by the normaliza-

Co tion condition J dx 01 (x) = 0. Note, that the stationary
f dt (<O>, - (Kt) J dxo1(x)O(x) SUPP

TtLRT - 0 ----. 'upp (14) probability density [35]

wheO - ox WgDpo - Wobil'

where(<0>,= j dx P(x)q (x)andP,(x) = <6(xX )>DM P,(x) = N----exp 2 dy = F+ -F_
'upp

is the time dependent proliability density, and Po(x) and (22)
P, (x) are the initial and stationary densities, repectively. The
quantity solves the homogeneous part of (20) and that the normali-

zation factor N cancels out in (21).
ei(x) =S dt [P1 (x) - P (x)] (15) We finally write the NLRT as

0

can be determined without explicit knowledge of P,(x) as T LRT 1 *dx(Ox) - <0>)
follows. ('ko-(4'x. (23)

Introducing P = (P,, Q,)T where Q, (x) = (<I 6 (x -x& x
DMP the Kolmogorov forward equation reads X)

A =L ( - Po, L g (16) In the limit of the Gaussian white noise the result [23] is
kA i( , -2a + f reproduced.
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Similar to the.MFPT, the integrals in (23) can be evalu- In Figs. 3 and 4 we compare the NLRT given by (24) with
ated in terms of generalized hypergeometric functions of the MFPT to reach xE = a"/ starting from xo = Xmin. The
-multiple arguments if 4) and F are polynomial in x. analytic results for both NLRT and MFPT are checked by

The choice- 4) (x) = f(x)/g(x) makes the integrals in (23) a digital simulation.
especially simple.For the Stratonovich model we investigate Both characteristic times have the same order of magni-
therefore the relaxation of the second moments (x2>, to the tude, and show a similar behaviour in dependence on sys-
stationary value <x2>, = a from the initial value x2 = tem's and noise parameters. For slow processes MFPT and
xi,, in the parameter region considered above. NLRT come very close, the difference enlarges however if

After some algebra we obtain the driving process becomes faster and the control param-
eter reaches the critical point.

T x2LRT= x lnx - dx P,(x)lnx/. (24) A more detailed derivation and thorough discussion will
x0 -a I _ be published elsewhere [36].

The evaluation of the integral yields Valuable discussions with Peter Hfinggi, Frank Moss, and Peter

x, a x 2 (24)' -2A Jung are gratefully acknowledged.

S dx P(x)lnx lnx_ + x ').+" B(A+, A)
0References

. 0 + + I),,,1 (1 -+ ), n (25) [1] F. Moss and P, V. E. McClintock, Noise in Nonlinear Dy-
.,l,. 0 ().+ + 1 + in + n + 1) . (A+ + i + n) in!it! namical Systems, Cambridge University Press, Cambridge

1989.
zI (x_) . [2] R. L. Stratonovich, Topics in the Theory of Random Noise,

Vols. 1 and 2, Gordon and Breach, New York 1963 and 1967.
[3] A. Teubel, U. Behn, and A. Kiihnel, Z. Phys. B71, 393 (1987).
[4] P. Hiinggi, Phys. Rev. A26, 2996 (1982).
[5] P. Hiinggi and Ph. Talkner, Phys. Rev. Lett. 51, 2242 (1983).

t[6] P. Hiinggi and P. Riseborough, Phys, Rev. A27. 3379 (1983).
[7] C, van den Broeck and P. Hiinggi, Phys. Rev. A30, 2730
[7] (1984).

0.5 MFPT [8] P. Hiinggi and P. Talkner, Phys. Rev. A32, 1934 (1985).
[9] J. M. Sancho, Phys. Rev. A31. 3523 (1985).

[10] F. Sagues, Physica A 132, 489 (1985),
[11] M. A. Rodriguez and L. Pesquera, Phys. Rev. A34. 4532

(1986),
[12] K. Sehiele and U. Behn, Wiss. Z. KMU Leipzig, Math.-Nat.

R. 36, 409 (1987).
[13] V. Balakrishnan, C. van den Broeck, and P. Hiinggi, Phys.

Rev, A38. 4213 (1988).
0[14] U. Behn and K. Schiele, Z. Phys. B77, 485 (1989).

Q5 1.5 -( [15] J. Masoliver, K. Lindenberg, and B. J. West, Phys. Rev. A33,
Fig.3Z2t) 2177 (1986); ibid 34, 1481 (1986); ibid 34, 2351 (1986).

Fig. 3,[16] J. Masoliver, K. Lindenberg, and B. J. West, in Transport and
NLRT of the second moment TI2RT for the Stratonovich model to relaxation in random materials, ed. by J. Klafter, R. Rubin,
reach the stationary value a starting from x.,, for a = 1.5, A = I and M. F. Shlesinger, World Scientific, Singapore 1987.
(broken line) against the noise parameters ,/(24). We compare the [17] C. R. Doering, Phys. Rev. A35, 3166 (1987).
NLRT with MFPT hIFrr = (T+ + T_/2 to reach first the value [18] G. H. Weiss, J. Masoliver, K. Lindenberg, and B. J. West,
alp- starting from x, (solid line). The results of a digital simulation Phys. Rev. A36, 1435 (1987).
from 10'-101 realizations are indicated by the full rectangles and [19] G. P. Tsironis and C. van den Broeck, Phys. Rev. A38, 4362
full circles, repectively (1988); K. Lindenberg, B. J. West, and J. Masoliver, in Noise

in Nonlinear Dynamical Systems, ed. by F. Moss and P. V.
E. McClintock, Cambridge University Press, Cambridge 1989.

t [20] P. Jung and H. Risken, Z. Phys. B59, 469 (1985).
MFPT [21] J. Casademunt, and J. M. Sancho, Phys. Lett. A123, 271

- (1987).
0.5 [22] J. Casademunt and J. M. Sancho, J. Stat. Phys. 56,911 (1989).

[23] J. 1. Jimenez-Aquino, J. Casademunt, and J. M. Sancho, Phys.
~ir1 ,Lett. A 133, A, 3641 (1988).

[24] J. Casademunt and J. M. Sancho, Phys. Rev. A39,4915 (1989).
NLRT r - -[25] J. Casademunt, J. I. Jimenez-Aquino, and J. M. Sancho, Phys-

ica A 156, 628 (1989).
[26] J. Casademunt, J. I. Jimenez-Aquino, and J. M. Sancho, Phys.

0 1 Rev. A40, 5905 (1989).
- [27] J. Casademunt, J. I. Jimenez-Aquino, J. M. Sancho, C. J. Lam-

1/A bert, R. Manella, P. Martano, P. V. E. McClintock, and N.
Fig. 4 G. Stocks, Phys. Rev. A40, 5915 (1989).
The same quantities as in rig. 3 against the control parameter a [28] R. Manella, C. J. Lambert, N. G. StjLkb, and P. V. E. M%,-
for a = 3.6, J = I Clintock, Phys. Rev. A41, 3016 (1990).



342 C. -Vanden°Broeck afidV. Balakrishnan: First Passage Times and Transport in Systems-with Disorder

[29] M. James, F. Moss, P.,Hiinggi, andC. van den Broeck, Phys. 135], The stationary probability density for general dichotomous
Rev. A38j 4690 (1989); J. M. Sancho and M. San Miguel, Phys. flows has been obtained first by. Klyatskin, Radiophys. Quan-
Rev. A39, 2722 (1989). turn Electr. 20, 382 (1977). For a more complete list of refer-

[30]' P: .Hnggi, F. Marchesoni, and -P. Grigolini; Z. Phys. B56, ences see 13].
333 (1984). [36. R. Miiiler, U. Behn, and K. Schiele, in preparation.

[31]. H. A. Kramers, Physica 7, 284 (1940).
[32]. P. Hdnggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. Presented at the Discussion Meeting of the E 7504

62, 251 (1990). Deutsche Bunsen-Gesellschaft fOr Physi-
[33] K. Wodkiewicz, B. W. Shore, and J. H. Eberly, J. Opt. Soc. kalische Chemie "Rate Processes in\Dis-

Am. BI. 398 (1984). sipative Systems: 50 Years after Kramers"
[34] K. Binder, Phys. Rev. B8, 3423 (1973). in Tutzing, September 10-13, 1990

First Passage Times and Transport in Systems with Disorder
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Diffusion / Statistical Mechanics / Transport Properties
We illustrate how first passage times can be calculated in systems with disorder. We use a renormalization
approach to discuss first passage times in one-dimensional continuous time random walks and on deter-
ministic fractals. We discuss the phenomenon of field-induced trapping on a random comb. Finally, we
calculate mean first-passage times for one-dimensional random random walks, and discuss, in particular.
the case of Sinai disorder. In a short Appendix, we show how mean first-passage times can be calculated
for an arbitrary inhomogeneous continuous time random walk in one dimension, using a recursion relation

similar in spirit to the renormalization approach,

1. Introduction terms of a continuous time random walk on a regular lattice
We are celebrating the 50th anniversary of Kramers'sere- with an effective waiting time density that captures the es-

inal paper [1] on thermal escape over a potential barrier sential features of the disorder. This approach was adopted

As is indicated by the vast literature on the subject, there withsuccess by Montroll and Scher [5] in their paper on

has been a great deal of effort in trying to improve and anomalous transport in amorphous semiconductors. In Sec-

generalize the results of Kramers [2]: One of the challenges tions 2 of this paper, we will illustrate how first passage time

has been to obtain results for thermal escape in higher- densities can be obtained for biased random walks on the

dimensional systems. Another challenge, the one that we will line, using the above mentioned renormalization procedure.

address here, is to study transport and escape phenomena Systems with disorder lack translational invariance. In

in systems with disorder. The paper by Kramers is known, many cases, however, it is found that they are characterized

among physicists, mainly in relation to the result for the by scale invariance. This suggests that the study of transport

transition rate in a bistable system in the high-friction or on simple scale invariant structures, such as deterministic

Smoluchowski limit. This result, however, was anticipated fractals, is relevant to the understanding of transport in sys-

by earlier results on first passage time in a one-dimensional tems with disorder. In Section 3, we illustrate how the re-

diffusion process (and by the "flux-over-population" calcu- normalization approach, applied to continuous time ran-

lation for the transition rate) [2]. There has also been a lot dom walks in one dimension, can also be formulated for

of progress in the calculation of first passage time properties, deterministic fractals.
especially in one-dimensional systems (3]. Here we will A third way to model disorder is to consider a simplifiedbriefly review how first passage time densities and their mo- random model, which hopefully displays transport proper-
merits can be calculated in an elegant way, using renormal- ties similar to that of the physical system. An example is the
ization procedures, and how these results can be applied to random comb, which is discussed in Section 4. This model
izuratnpoedres, anrhopr t hes e rsysut s ch ber l t is of interest because it displays a transition between field-
study transport properties in systems with disorder [4].trapping.

We will discuss four types of models that have been in- inuecovtonofel-dcdtrpngto ed toll dstudyfour thppees of sytes wth dre r. Finally, in Section 5, we calculate the mean first passagetroduced to study the properties of systems with disorder time in a so-called random random walk (in one dimension).One of the simplest approaches is based on a description in We discuss in particular the case of Sinai disorder, which
corresponds to the case of a random walk with symmetric

*) Permanent address: LUC, B-3610 Diepenbeek, Belgium. disorder.
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A typical feature, of all these models is that disorder can excursions have to add up to r. In terms of Laplace trans-
give rise to0anomalous transport. By this, one usually means forms, a convolution becomes, a product, and we get the
thatvthe dispersive motion is subdiffusive (cf. Sections 2 and following simple result:
3), or that,the convective motion is sub-ballistic (in the pres-
ence of a field,.cf. Section 4). Ini the context of Kramers qoj(s) = tP)(s)12 + 2(0)(s)(s)[' ( )(s)] 2  (2.2)
escape, the density of escape times may be non-exponential' + 2 (2.2)

(cf. Section 5 for an example). + +

-or
2. Renormalization of Biased Continuous Time Random

Walks [1P(s)]2

We consider a continuous time, nearest-neighbour ran- + 1-2 5)(s)02(s) (2.3)

dom walk on the set of natural numbers i = 0,1,2,.... The
walk is characterized by the waiting time densities pT() Here,.the superscript - denotes the Laplace transformed
and ipW( for the walkerat any site i > 0 to step to the function,
sites i+ 1 and 1 - I respectively,,.after a residence time at I
equal tC;T. The waiting time density for the walker, located ca
at the origin, to step to site +1 after a total time T is denoted I(s) = e-'f(t) dt. (2.4)
W;)(T). For simplicity, we will assume that these are also the 0

waiting time densities for the occurrence of the first jump,
which is the appropriate choice for a so-called ordinary re- Since the decimated lattice has a structure identical to the
newal process. original lattice, the renormalization equation will have a

Since form identical to the one above, at any stage of the-dcci-
mation. Similar equations arc easily derived: for the other

'- 00 two waiting time densities, and we find (dropping for-brevity,IMo I V(0() dq"O) IVL()d 20 (r)d?, = J t,4)(?)d? (2.1) the s-dependence):
0 0

are the probabilities for stepping to the right or left at any 01 [ -] (2.5a)
site i > 0(pt ) + q(0) =1l), we see that the case q(0) > p(t cor- 1
responds to the situation of a particle trapped at the origin
by a bias field equal to qO) - p. Our purpose is to calculate t01 [j -7)1 (2.5b)
the probability density for the escape time from this trap by 1 -2 i- a-
using a renormalization procedure. Apart from giving a new
and elegant solution to this problem, the renormalization - -
procedure has also the advantage that it can be applied to ) W_,-_ _- (2.5c)
deterministic fractals (cf. Section 3). 1 - _

41) 41) Before we give the solution to these recursion relations, we

+make a few comments. First, the waiting time densities
Y,4i and t) are, in fact, the first passage time densities to
the sites at a distance +2' and -2" of the considered site

i2 W on the original lattice (assuming, of course, that the initial
site i is situated suffibiently far from the boundary at 0, i.e.,

Fig. I assuming that i > 2n). Wp ) is the first passage time or escape
Renormalization of a biased continuous time random walk in one time density from site 0 to the site at the position 2" on the
dimension, with a reflecting boundary at the origin original lattice. Second, normalization implies that lp3t?(0) +

)(0) = 1 and OT)(0) = 1. This normalization property is

The procedure is as follows (see Fig. 1). Starting from site preserved under renormalization. Finally, a remarkable fea-

1, we decimate every other site on the lattice. The decimated ture of the renortalization equations is that the s-depend-

lattice has the same structure as the original one, but the ence of the functions .p plays no role in the solution of these

renormalized waiting time density, e.g. Wpt+(r), gives the recursion relations.

probability density for the wvaiting time to go from a site To solve the renormalization Eqs. (2.5) we first notice that

(say i)to the appropriate next nearest neighbour(i+ 2). This Eqs. (2.5a) and (2.5b) are closed in + and il_, and can be(sa 0 o te aproriae nxt earst eigbou (i+ 2. Tisrewvritten in the following convenient form:
transition can be realized by an arbitrary number of excur-

sions to the nearest neighbours, i + 1 or i - 1, and returns
to i, followed by the final excursion to the next nearest neigh- W-" = F [n- 1 (2.6a)
bour i + 2. Moreover, the partial times spent in these various L -J
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and one finds:

1 1 4 ) ( (2.13a)
( =V -" L-'I  )+ (2.66) )O 2coh(.13

( ( 2cosh(21 ) (2.13b)

where T2 (z) = 2z2 - 1, is the Chebyshev polynomial of or- with
der 2.

The solution of Eq. (2.6a) is obvious: k + s
cosh = 2k . (2.13c)

W+ = lI-+ (2.7)(wL I
These results can also be obtained using the known results
for the Green function of a biased random walk [6,7], and

On the other hand, Eq. (2.6b) is,.in fact, identical to the the ren euation (i ap iate ondary cond

logistic map at fully developed chaos. Its solution goes backcondi-
tions) linking the above first passage time densities to this

to Von Neumann and Ulam. This solution is easily obtained Green function.
using the following definition and property of the Chebyshev Let us now turn to the solution of Eq. (2.5c). This equation
polynomials: is linear in I/q5p and can be rewritten as follows:

T,,(z) = cosh(ncosh-z) (2.8) 1 1
Sn)iFg-) = - (2.14)

T. (T., (z)) = T.. (z) (2.9)
where y,, is given by (cf. Eqs. (2.11)):

Hence

= 0 0_ _ 1 (2 .15)
(2.10)

cosh(2"cosh' 4 ) Eq. (2.14) can easily be solved recursively, and one obtains:

where cosh - I denotes the inverse hyperbolic cosine. Coin- YIY2...Yn 7t O) ) (2.16)
bining Eqs. (2.7) and (2A0), we conclude that - (1Y + Y, Y2 + ... + .+ Y2 ...Y,-1) •

(n) -- E_ 2 (2.11 a) From the identity

2cosh(2" ) sinh(2) = 2sinh cosh (2.17)
and

it follows that

2cosh(2") I " sinh(2"+1') (2.18)
Y( Y2 ... Yn - sinh(2 (218)

where is defined by
On the other, the identity

cosh¢ = 1 V/ )'V21. (2.11c)

coth(2) = coth - (2.19)
For the case of a Markovian walk-with jump rate k, namely, sinh(2 )

0,)(s) = P(I) k (2.12a) yields

k+s =2.12a)

2 -(s) = q(" k (2.12b)i sinh(2') (2.20)
q" k+s ( ) [coth -coth(2")]sinh(2).
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Hence Note again that this equation preserves the normalization
(("-')(s = 0) = I implies that f)() (s = 0) = 1). The mean

- = !)2, first passage time (n )> to reach one of the tour nearest

(2+ coth (2" h neighbours on the n-times decimated lattice is given by:Lih2 ) sinh(2_ ) +  oh2)-th

(2.21) (3.2 = ds ()

where has been defined in Eq. (2.11c). The results (2.11)
and (2.21) are the exact solutions of the renormalization Eqs. Eq. (3.1) then implies the following simple recursion relation:
(2.5), for general "initial conditions" i$, iPL2 and ip

0 . In case r 5<T n)>
of Markovian dynamics (cf. Eqs. (2.12)), with < (3.3)

Hence it takes (on the average) five times as long to go twice
kPj ) + (2.22) as far (since the distance under consideration doubles after

=kpO + seach decimation). This is in agreement with the well-known

subdiffusive behavior on this fractal. Higher order moments
Eq. (2.21) reduces to can be obtained recursively by calculating successively

higher order derivatives of both sides of Eq. (3.1). It is, how-
S (/ 1q) )2 sinh 2 ever, possible to write the explicit solution of Eq. (3.1), by

=sinh(21 + 1) V - 1po sinh2- (2.23) introducing the analytic function f(x) that is a solution of
the following nonlinear scaling equation [8]:

again a result which can be obtained from the renewal equa- 4f 2(xy - 3f(x) = f(5x), f(0) = f'(0) = I , (3.4)
tion linking the first passage time IJ5) to the known Green
function of a random walk with a reflecting boundary con- One can show that, such a solution exists and that it is
dition at the origin [6,7]. unique. The solution of Eq. (3.1) can then be written as

(compare with Eq. (2.10)):

1/ -)(s) = f[5nf-' (1/u&)(s))] (3.5)

wheref-I is the inverse function off. A number of properties
off can be derived from Eq. (3.4). Moreover, it represents
the solution to the quadratic map x,, = 4x2_- I - 3xn.-, (ob.
tained fromEq. (3.1) by setting x, = 1/0(n)), and is therefore
related to the study of (transient) chaos in such discrete maps
[8,10].

4. Escape and Field-Induced Trapping on a Random Comb

An interesting feature of an external bias on a system with
disorder is that it can have a dual effect: on the hand, it

Fig. 2 induces a drift in the direction of the field; on the other
Renormalization of a continuous time random walk on a Sierpmnski hand, it can create traps, if the network possesses dead-end
gasket branches. To participate in the convection, particles have to

escape from these dead-ends. This becomes increasingly dif-

3. Random Walks on Deterministic Fractals ficult as the amplitude of the field increases. The question
arises as to whether there exists a threshold value of the

The renomalization procedure that we have discussed in field, above which the drift velocity vanishes.
the preceding section can also be applied to simple deter- A model for which this question can be investigated in
ministic fractals, such atee e Sierpinski gasket (cf. Fig. 2). At full detail is the random comb (see Fig. 3) [11]. A particle
each stage ofd the dia ti e smallesto riangles are re- performs a random walk on an infinitely long linear lattice
moved, and the first passage time density to the four new (the backbone) with branches of random length emanating
nearest neighbours is calculated. The renormalization equa- at random from the sites of the backbone. We define the
tion has the following form (compare vith Eqs. (2.5)) [8], following probabilities (see Fig. 3): q is the probability to
see also ["9]: make a step in the "backward" direction, while p and p - p,

respectively, are the probabilities for a "forward" step on
(3.-1) the backbone at a non-vertex point (i.e., no side branches).

S 4-30( - (3.1) and at a vertex point. In the last case Pm is the probability
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As s, the energy, cost per site in the side branches, increases
from 0 to oo, Pc goes from 1/2 to 1. We note that Vd goes to

q zero linearly with (p, - p) in the vicinity of p,:

Vd - (P.- P) (2p.- 1) (1 -p) (4.6)
qPt P,

N+I ,, " , Beyond Pc, it can be shown that sub-convective behaviour
sets in, with [11]

.\n(t)>,t I 1 (4.7)

Fig. 3 5. Random Random Walks

Biased random walk on a random comb Consider a random walk on the set of integers, such that
a walker can move to the left or right at each-site ieZ with

to move into the side branch.,UN is the probability that a transition rates equal'to ki- and kil respectively. Further-

side-branch, has a length N(N = 1,2, ...), and more, suppose these rates are themselves random variables,
identically distributed but independent from site to site,
while the rates at the same site are possibly correlated. To

S(4.1) obtain some insight into the transport properties of such a

random random walk, we investigate the analogue of the

is the probability that a site is a vertex. An explicit mean problem discussed in Section 2. A particle starts at the origin
field calculation [11] leads to the following value of the drift of a semi-infinite lattice with disorder (of the kind just des-
velocity along the backbone (for p # q, and choosing the cribed). How long will it take to escape to a certain distance
unit of time to be equal to the mean waiting time betwee, i, from the origin? To calculate this time, we will use the

jumps): following exact result for the moments T, = <,"> of the first
passage time T to go from a site io to i (where i > io) in a

lim (n (t)> =p- q•nearest neighbour random walk with general transition rates
,+ + ( 2 c (p~q),2_2q ) 17]

pt 1 (-p,)(p-q) -1 n T
(4..2) T io= n E E T,.(ils) P(s) (5.1)(4..),-,0 ,- -,, k,+ P (r)

Note that vd will vanish in the limit of a symmetric walk Here To 0 0, and the lattice extends to - co. P(s) is the
p-q, as expected, but also in the case when steady-state probability distribution for the same random

walk with a reflecting boundary condition at s = i (i.e.

E av (p/q) N (4.3) k-it =0), namely,

diverges. An interesting situation displaying a non-trivial P(s) =- k .,. ki-L Pi- 1). (5.2)
critical" behaviour is that of an exponential probability kS+ k,+t k i-12

distribution for the branch length N(N = 1,2,...): P(i- 1) can be found from the normalization condition (we
=exp (-sN) (e1) (r > 0) . (4.4) are assuming that this normalization factor is finite, i.e. that

P(s) exists). In particular, the mean first passage time TQIO)

Such a distribution has the form of a Boltzmann factor with to go from zero to i, when there is a reflecting boundary at

s representing the "cost" in energy per site. (If the branches the left of zero, may be obtained from the foregoing general

:re imagined to represent - albeit crudely - finite clusters result by setting ko- = 0 and P(0) = 0. We get
attached to the backbone, such an exponential distribution
of cluster sizes is not unrealistic, with c-  standing for the Tk (ilO) =,-- - + -'I k7 ,'- k 1T&JO) + 1 1 r-(5.3)
cluster size lengthscale). For this model, a finite drift velocity .0 = k0 ks ks++ " kr+ J(5
is obtained for values 1/2 < p < p,, with the critical value p,
given by In the Appendix, we show how this result can be derived in

a simple way using ideas similar to those of the renormal-

e 1, or p, = (4.5) ization procedure discussed above. The rates at a given site
-Pc I + e- are possibly correlated, but those at different sites are not.



C.. Vanden Broeck:and V. BalAkiishnan: First Passage Times and Transport in Systemswith Disorder 347

The average over-the disorder can thus easily be carried out, not change on the average, its root mean- square displace-
and one finds [7], see also [12]: ment grows extremely slowly with time, namely:

1(i(0)-- ( ,-")[0- 1-i(1 -i)] (54) <i(t)> ln4 t. (5.9)

The result (5.9) can be easily understood as follows [15].
where we have defined One can view the presence of a local bias k+ > kF as a

small increase of an effective potential in which the particle
_(k-5 is moving. An opposite bias k+ < kF corresponds to a

g ( decrease of the potential. Since the rates at different sites are
independent, the potential U which one thus obtains in func-

We emphasize that two kinds of averages are-involved, an tion of i is itself like a realization of an(uncorrelated) ran-
average over the statistics of the random walk (TI is the dom walk (in the variable i); hence the amplitude, of the
mean first passage time for a given realization, of the fluctuations of the potential i/-AV1§ over a region of length
quenched disorder), and one over the disorder (denoted by i, will be typically of the order of Vi. In order to cover such
the overbar). The foregoing calculation also applies to the a distance, the particle has to overcome a barrier of typical
case of non-random constant rates k+ and k-, and the result height ,/(Au2 >, and the time needed to do so is:
is identical' to Eqs. (5.4) and (5.5), with the overhead bars
removed. In the Calculation above, we have introduced a T - eV'7 ( >- e r4 . (5.10)
reflecting boundary at 0 to guarantee that a finite mean first
passage time exists. In the case of a disordered system, with This explains, heuristically, why the length scales as the
a mean bias pointing away from0, i.e. g < 1, we expectthat square of the logarithm of the time in this problem. The
this boundary condition becomes irrelevant for the behavior foregoing behavior of T is surprising, for the following-rea-
of the first passage time in the limit i- oo. In this case, son. We have seen that the disorder-averaged mean first
Eq. (5.4) reduces to passage time must in fact be essentially the same as that of

a particle trapped at the origin by a certain constant effective

Tj i0)= (5.6) field biased towards the origin, in-a random walk without
+- any disorder. The latter mean first passage time has been

found in Eq. (5.4). Now, using Jensen's inequality, we find
which is identical to the result for an ordinary random walk that
with the drift velocity -,

Vd = .). (- In (k-) = Ing. (5.11)

This straightforward calculation thus leads quite easily to The Sinai condition (5.8) therefore implies that the effective
the evaluation of the effective drift velocity of the random bias is directed towards the origin (g > 1). For large dis-
random walk. Eq. (5.7) is identical to the result obtained by tances i, one then gets (employing the standard Arrhenius
Derrida [13] using a much more complicated procedure. In form for the escape over a barrier)
a similar way, the calculation of the second moment T2 leads
to the correct value of the effective diffusion coefficient [7]. TIT(0) , e'1 g. (5.12)
One should, however, be ,careful in extrapolating results
from configuration-averaged first passage time properties This is in sharp contrast to the results of the heuristic scaling
directly to actual transport properties of the disordered sys- arguments given above, cf. Eq. (5.10). This discrepancy was
tem. To illustrate the sort of problem that can arise, we first noticed and explained by Noskowicz and Goldhirsch
discuss the case of so-called Sinai disorder [14]. [16]. The explanation is in fact quite obvious: the average

A random random walk with Sinai disorder is character- over the disorder in Eq. (5.12) is dominated by the config-
ized by the following additional properties: urations in which the effective potential, that the particle

has to overcome, is of order i rather than the typical value
In(k' ln2 0 In -_V < 0. (5.8) Vi. These configurations have an exponentially small prob-

k0.( . ability; but the corresponding first passage times are expo-

nentially large, and they dominate in the calculation of the
The first cordition indicates that the disorder is ymmetI, axerage. Eq. (5.12), even though an exact result, is atypical
on the average", i.e. a bias to the left and to the right are for Sinai disorder and does not describe the typical first
equally probable at any site. The second condition puts a passage time dynamics that one observes in this case.
limit on the strength of the disorder. Under these conditions, Xc a,.knuewldgu buppit fr het N.F.\.O. Blgium and from
Sinai [14] shou ed that %hile the position of a %Nalker does the Piogiam on Int,,i Uncr~a) Atu.±tion Polsc of the Bdgwrn
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First Passage Times for Inhoinogeneous Continuous-Time pj k p, k,+

,Random-Walks in One Dimension We thus recover the familar result

We consider a continuous-time random, walk on the set of in- ',k-

tegers, characterized by the site-dependent waiting time densities T,(mlmo) = , + X k7 + ,J (A.9)
f3l+ (r) and jir(T) to jump from i to i+ 1 and i-I respectively at , , +  k-
time r (without first jumping to the other neighbour). To calculate in this instance.
first passage times on-this lattice, we first consider the first passage
time to go from i to i + 1 (involving any type of excursion to the
left of i). Clearly such.a first passage can be realized by n jumps to References
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Colored Noise / Inversion States / Nonequilibrium Phenomena / Nonlinear Phenomena
We consider bistable dynamics driven externally by a noisy harmonic oscillator. For small damping we
derive a Markovian approximation for the energy dynamics. In conclusion.we discuss the possibility of

the inversion of bistable oscillators induced by colored noise.

1. Introduction 2 804

The coordinate of, a white noise driven harmonic oscil- ( = (t 2 2 + (o2_- ( )2) (1.2)

later is used as a stichastic source term in bistable dynamics.
This simple picture on the one hand side generalizes the
co nept of colored-noise where usually the Ornstein-Uhl- possesses a peak at ion = (o - F2/2)t i corresponding to an
,enbeck-proeess is applied to nonlinear dynamics [1]. On oscillating correlation function. The stationary probablity
the othor hand our picture gives rise to resonance phenom- aistribution density (p.d.d.) is a Gaussian one and an effec-
ena as they are studied in the case of Duffing oscillators [2]. tive temperature of the noise can be introduced by
In that case a phase- and amplitude-stabilized periodic func-
tion is applied as a driving force on-the bistable dynamics. I S)2> r (Ay2  =4
This requires generally a nonlinear driving elemeit to gen- + T (
erate the phase and amplitude locking.

Contrary, we think that our situation is simpler since it We see that the quality factor Q = o/F influences strongly
implies only linear elements in the generation of the noisy the effective temperature.
periodic force. Also we will assume mean energies of the For fixed temperatures TN and fixed a by changing F we

driving oscillators much smaller than the energy barrier of distinguish three typical regimes of transitions between the
the bistable oscillator aid the resonance phenomena will be two stable attractors [6]:
of stochastic origin due to amplitude and piaase flu -tuations. (i)or small F (Qo small as well) it yields a modulation

We see many similarities to the investigations whsih now- of the bistable oscillator. Once the harmonic oscillator
adays are discussed in the framework of "stochastic reso- reaches high energy it is slowly damped out. In this situation
,nance" [3]. We want to point out that this resonance cor- the bistable oscillator is forced by the noise to move with
responds niore to a modulation since the harmonics of the the frequency of the applied force;
process are determined by the frequency of the driving func- (ii) For large F the oscillatory character is suppressed and
tion. In contrast to this we will obtain transition frequencies the noise is effectively white. Transitions are very rare;

between the two attractors of the bistable dynamics quite (iii) If for medium F the effective frequency of the har-

different from that of the driving force. This is due to res- monic noise equals to the frequencies of the bistable dynam-

onance effects between the noisy driving oscillator and the ics in the attractor region transitions occur rapidly due to

bistable dynamics (comp. [4]). resonance. The mean transition time is of several magnitudes

.The model we studied consists in a four-dimensional Mar- smaller than in the white noise case.

kovian dynamics [5,6] (similar proposals were made in The maximal number of transitions occurs in the reso-
Refs. [7], our model describes situations which are related nance regime. For this case we draw in Fig. 1 the waiting
to the microwave modulated Josephson-junctions [8]) time distribution for an escape. It shows an exponential

decay with small peaks at the subharmonics (comp. [4]).
x = v; v = -Y v + f(x) + y(t) (1.1) The transitions, therefore, are mainly of stochastic origin.

= s; s = -Vs - 2 y + a j/ (t) Some properties of the resonant regime can be understood
by investigating the effect of the harmonic noise on linear

where (t) is white noise and this stochastic source term is systems (i.e. f(x) = x in Eq. (1.1)). Then the corre-
scaled in such a way that s is the intensity of the noise ytt) sponding stationary Fokker-Planck-equation for the four-

in the white noise limit if(i) F -), c; 2o --* oo; = T = dimensional dynamics can be solved exactly. It is a Gaussian

const; & = const and (ii) T --+ 0; 8 const. We suppose distribution and the mean energy of the driven oscillator

bistable forces f(x).
Let us shortly characterize the dynamics of the driving 1 (14

system [9]. Under the condition go' > F2/2 the spectrum E ((Av) 2> + - ((Ax) 2>

Ber. Bunsengeo. Phys. Chem. 95 ,19911 Nci. 3 VCII erlaysyesllelhalt tobi. I -094Ui 1- 1 hom. 1991 tJQ5-YV12,90,1J3U3-0349 5 3.5i-)-.251,
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P We propose a Markovian approximation for the dynamics
of the energy of a harmonic noise driven bistable oscillator,
which will be valid for sufficiently small y.

2. Markovian Approximation for the Energy Dynamics in
the-low Friction Limit
We consider the damped oscillator driven by harmonic

noise and introduce the potential V(x) (f(x) - V'(x))

Tm o=HV; x-= -,v -u u + y(t). (2.1)

The energy E = v2/2 + V(x) of this system will be a slow
TM a X (T) variable in the low friction regime if

, < g' <-CO, (2.2)
Fig. 1
Waiting time distribution for transitions in the Duffing oscillator, where o is the frequency for the motion in the potential and
The characteristic times of transitions (the mostprobable Tm, as T., is the correlation time of the noise. The relation (2.2)
well as the mean time (T)) are quite different from the character- implies a Markovian approximation for the energy dynam-
istic ime-of the driving force 2n/Op ics. To obtain this Markovian description we use in the

following a modification of a method which has been
(E> worked~out by Carmeli and Nitzan [11].

In a single potential well it is possible to introduce the
S,, r action angle variables (1,0i) definedby the canonical equa-

tions

0 H(2.3)

where H is the Hamiltonian of the deterministic system with-
out friction. For these new variables we obtain from Eq. (2.1)

P 0 the Langevin equations

Fig. 2 a X
Mean energy <E> in dependence on the frequency of the driven y = (- yv + y(t)); = co(1) - Lx (- yv + y(t)). (2.4)
osciliator wo for the linear system, The effective frequency of the 1
driving oscillator is wp. The full line is the result for the exact
solution; the dotted line is the result from Eq. (2.13) Expanding the coordinate x and the velocity v in Fourier

series
with the standard deviations

+0o +00

(A)o (1 _ =/Q)2  (1.5) X(1, -= xnei;v(L'P)= E~ nei-oo (2.5)

71 L20 no I +1 Y/ " the Langevin equations result

and, n.m- +o +o

=-iZ Z nxnv,mei(n+n+iy(t) Z nx, e 4'
<(Ax)2> n.m.-oo --

+00 +00 d, +do dx.
_______________________E_ E - v ei(n+ps)~~ _ n

2( + 2 (1 + v/F)2  n.. n--<o dI
0ookvF 2Wo 1 +F(1 +yl/r)/2 + yo/Ira,_ (2.6)

shows resonance (Fig. 2). (1.6') Then the time evolution of the p.d.d. for the action angle
dynamics P (I, , t) is given by the Kramers-Moyal expan-

In reference [6] we derived a Markovian approximation sion
for the dynamics of the bistable oscillator in the phase space
(x,v) and for the overdamped bistable system following the OP .1 (-1)- "

ideas of the unified colored noise approximation [10]. Un- t - n! m,k
fortunately the resulting Fokker-Planck equation for the m +k-n (2.7)
p.d.d. has been solved for the overdamped limit only .(Al,'(T)A ,(T)>p
(y --* oo), but not for the general case. In the next section J
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It-reduces to the knowledge of the moments ((Al)' (Ao)k)>. Langevin Eq. (2.4) leads in the low friction limit [12] to~the
Their computation can be realized by, using the -iteration same stationary p.d. P( 11 (E) as the approach described

above. This implies that this approach can be interpreted
asan averaging over the generalized phase 4) in the basic

Al (r) -- SdsI(I(t) + AI~'-)(s), 4) (t)'+ A4)~t-(s), t + s), Eq. (2.6) for a nonlinear potential V(x).
0

(2.8)
3. Inversion by Harmonic Noise

where the -startingpoint AlO) (s) - 0; Aq °) (s) = co(l)s For a white noise driven bistable oscillator the probability
follows from (2.3) and Lis given by, (2.6) (similarily for A)). to be in one of the two stable states is determined by its

Corresponding to (2.2) we neglect terms of order (Y/o)" energy value only. In this chapter we will show the possi-
and also (Zk(o)/o)" with n _> I where Zk (o) are the Fourier bility of generating an inversion of bistable oscillators due
expansion coefficients of the stationary correlation function to the action of the harmonic noise. In detail this means
of the harmonic noise. Terms of order T" (n > 1) vanish in that due to the resonant activation we force the oscillator
the limit T - 0 and so we obtain as in the white noise case to be in the state with higher energy. with more probability
that all momentswith mi + k > 2 vanish in (2.7). Because than in the low energy state. For this purpose the high
of the periodicity of P (I, 4), t) in 4) we get after 4-integration energy state is detuned whereas the low energy state will be
and by transition to the energy variable (dI = dE/o) the in resonance with the harmonic noise. What follows is that
Fokker-Planck equation for the dynamics of the energy the oscillator will leave quickly the low energy state due to
p.d.d. P(E, t) resonance and otherwise will stay long times in the detuned

state.
OP ()E (c, (E) + "2 (E) - ) CO(E)P (2.9) To demonstrate this effect we consider the simple model

t OE
dV

=V; = -?v - V + y (t)

with dx (3.1)

c,(E) = 2y n2x.(E) (2.10) 2
-i (ELO + L (XL x)V: x < 0

and V(x) 2E 0 +
E O+- 2(xR - X): X > 0

2 20c,(E) = X n2~ x , (E) Sy,, (nwo(E)). (2.11)
) n ( of a bistable oscillator driven by harmonic noise (cf. Fig.

where S . is the defined spectrum in (1.2). The stationairy (3)). The essence of this model is the different energy levelspd.e eis teen serof the minima of the potential (which results in differentpd., becomes activation energies as well) and the difference of the fre-
Se( , 2(E'1) quencies in the bottom of the wells.p~l) (E) = N- t I o- I (E) exp -J dE' .(') (2.12)

V

Generally the ei(E) and e2(E) have to be computed numer-
ically for nonlinear problems. To understand the mechanism
we reduce the description onto harmonic potentials V(x) =
avx 2/2. In this case all terms in the sums (2.10) and (2.11)
with n > I vanish and we obtain the stationary p.d.d. D

Pt') (E) = N- 1 w' exp ( Y (2.13) E(LO)-lR
ERO' -

We see the effect of the noise results in an effective temper- I -- x

ature which is determined by the spectrum. For the mean XL xR
value of the energy <E> Sy(o)/2y follows a resonance
at c0 = op due to the peak in the spectrum of the harmonic Fig. 3
noise at wp. For nonlinear potentials we get resonance phe- Bistable oscillator under harmonk noise Here ib 6hoiNn a nonsym-

metric bistable oscillator, where the frequenc) of the harmonic noise
nomena as well whrch result from e2 E) in (2.12). But the is just about the frequency of the right well (wo0 - o)). Hence the
resonance frequency will differs from cop (cf. [8]). For har- transition rates are asymmetrically due to resonace like it is depicted
monic potentials an averaging over rapid oscillations in the with the arrows
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if the barrier energies DL and DRare sufficiently large Syy (coL)DR (2 ( DL DR ') (3.11)
S(WDLexp 2 (3.11)lS~(o)I

D,., Syy ((o/2 y; i = L, R (3.3)

A resonance in the deeper right well ((OR ;- (op) and a de-
than we reduce the p.d;d. in both wells to the canonic-like tuning in -the left well can lead to a inversion with s > 1,
distribution (2.13), i.e. -we put in every well as an first esti- the resonance pumps the population in the state with the
mate higher energy. The problem is more complicated in the case

of more realistic bistable potentials with a continuous first

Pi (E) = NF Io exp - 2 -- ,.." 0 E < Di. (3.4) derivative dV/dx at the barrier. The frequencies vanish
y S(wi)i o,--.0 as E1-..-D, (i = L,-R) and the low friction limit is not

valid. Therefore the properties in the wells and at the barrier
must be considered separately with some continuity con-

L and R correspond to the left and right well and the en- mutbcosdrdepaelwihoecniutyo-
ergies and Rcor respond to the eftom d r well .d The ditions [14,15]. By generalization of the result for our sim-
prgbailities o a he e alstasured f the hwell . Te ple model it follows the possiblity of inversion in such bist-

able systems due to resonance phenomena in the single wells.

DI

P= S dE Pi(E). (3.5) References
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Pair Nucleation Rate in a Driven Sine-Gordon Chain
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Nonlinear Phenomena / Nucleation / Statistical Mechanics / Transport Properties
Thermal production of sol;ton-antisoliton pairs in an overdamped driven sine-Gordon chain occurs
through the activation of'a critical nucleus. The relevant pair nucleation rate is calculated explicitly by
extending Kramers' theory to the case of an infinite dimensional, multistable system with one neutral

equilibrium mode.

1. Introduction b (o) = . 2 i, respectively, occuring at X(t) within a length
The perturbed sine-Gordon (SG) equation [1] comparable with the OK(K) size c0/tw0. The energy required

for the SG chain to bridge two adjacent potential minima
'P,,- c2 + oo. sino = -yO, - F+ (x,t) (1) is Eo = JdxH[PK(K)(x,O)] = 8woco (soliton rest mass). A

statistical approach to the SG theory leads to the following
provides an ideal model to study the nucleation processes prediction for the equilibrium soliton (antisoliton) density
of a variety of physical systems at thermal equilibrium (F= 0)
[2-4]. For instance, in plasma physics woo and c, model the
plasma frequency and the sound speed, respectively. In 1 1 2 to
Eq. (1) the ordinary SG equation has been coupled with a n G =n/ Co (fiEo)'a e - /I/ o. (5)
heat bath at temperature Tthrough a damping term, -yoS4,
with y a constant, and a gaussian noise C(x, t) with zero mean The dilute gas approximation is thus legimate in the low
andcorrelation function temperature limit fiE < 1, where n;' > c,/0o. The soliton

and antisoliton solutions (4) carry opposite topological
(x, t) (xt')) = 2 2 (t - t') (x -x') (2) charge and, therefore, they may only be created by the pair.P Furthermore, OKtK) are stable under the perturbation con-

sidered in Eq. (1), apart from a rigid translation, against(Pl = 1/kT). The constant force F is meant to represent an which they are in neutral equilibrium (Goldstone mode).
external physical bias which breaks the 0 -- - 'P symmetry, At this stage, the question arises as how a soliton-anti-
thus making the pair nucleation process possible [5, 6] soliton pair may be nucleated starting from a vacuum con-
but preserves the multistable nature of the SG potential figuration, e.g. 'P = 0. Thermal fluctuations are expected to
V[ ] = o2 (1 - cos 0), i.e. F< o,. trigger the process by activating a critical nucleus, the size

The unperturbed SG equation (i.e. Eq. (1) with the r.h.s. of which may be shown to increase with decreasing F[2-6].
set to zero) has been derived from the relativistically covar- Provided that the critical nucleus size is small enough to
iant Hamiltonian density ignore the many-body effects due to the thermalized gas of

solitons and antisolitons with density (5), we can describe
H[4i] T (01? + c' 0.) + V[0] (3) the nucleation process as a local two-body mechanism. This2 picture is tenable only for low temperatures and relatively

and bears both extended (phonons) and localized solutions. strong external biases. A two-body nucleation mechanism
can be treated as an extension of Kramers' theory [7] toLocalized solutions can be well approximated as an appro- multidimensional systems with neutral equilibrium (or zero)

priate linear superposition of solitons, OPK, and antisolitons,

in the limit when the separation among their centres is modes [2]. In the present paper we investigate this mech-anism in the classical limit. Some results reported belowvery large compared with their size (dilute gas approxima- have been anticipated in Ref. [6]. The quantum mechanical
tion). For later convenience, we write explicitly the single contributions to the two-body nucleation mechanism at
soliton (antisoliton) solution (mod 2n) temperatures higher than the thermal activation tempera-

" x- X(t) 1 ture have been addressed in Ref. [8]. The extension of our
OK(g,(xu) =4tg

- exp C 1 _ 122 (4) approach to other soliton bearing theories is also possible
[9].

Here, X(t) = x, + ut denotes the centre of mass of the so-
lution (4), which moves with constant speed u. ' K) repre- 2. Procedure
sents a dislocation of the SG chain between the potential It has been shoNn that in the presen,.e of fluctuation-
minimum at 0(- x) = 0 and the adjacent minimum at dissipation termb a sndialt soliton (anioliton) undergoes

Ber. Bunsenye. Phi. Chem. 95 41991, Xv. 3 VCH I erlag %.ehst haft nbH. 1-694U If inhen, 1991 UtJQ5-902,91,U303-0353 S 3..1) t.
2
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brownian motion, whereas thebias term pulls Op, andp, in The centre of the nucleus has been set at the origin without
opposite directions, according to the driven Langevin equa- loss of generality. The components of a large nucleus ex-

tion [10] perience two contrasting forces: an attractive force due to
the vicinity of the nucleating partner, the potential of inter-

= yp ±2nF+gEol(t) (6) action being a function of the distance 2X between their

where q(t) is a zero-mean valued, gaussian noise with cor- centres of mass

relation function (l(t)(0)> = 2DN(t), D --- and p V(X) = -2Eo e - x, X > 1, (10)
is' the boosted momentum of OK(K), P = EouII - 2 . From
now on, we simplify our notation by adopting dimensionl.'s and a repulsive force due to the constant bias F, which pulls
units, i.e. OK and bK apart, with effective potential -T- 2rFX, respec-

tively. The critical nucleus configuration, ON (x, R) is attained
X -- X, 0oo t -- t (7) at the distance between OK and- Og, 2R(F), where the two

CO competing forces compensate each other. q(x,R) is thus
n onqF/.-+F and co/kT--*, the saddle point configuration to overcome for the pair nu-

This amounts to setting o = cc and, in particular, eleation to take place. The critical nucleus admits of only
T o = 8. one unstable mode with negative eigenvalue, 2A', which in

= 8. the overdamped limit can be safely associated with the rel-
The two-body nucleation mechanism is well defined under tie ordae lii [3].

the supplementary condition that the SG chain is over-

damped, i.e. , > 1. Such a limitation affords three major The nucleation rate F (i.e. the number of pairs generated

simplifications: (i) oscillatory solutions of Eq. (1), like breath- per unit of time and length) can be related to the imaginary
ers and phonon radiation, are damped out and, therefore, part of the free energy of the critical nucleus, Im3, by means

do not play any significant role in the statistics of the prob- of Langer's formula [2]
,lem; (ii) the non-relativistic limit, p = Eou,is a good ap-
proximation. Accordingly, the Langevin equation (6) reads F = 11limj. (11)

2irF

= -Y1 ± - + 1l(t), (8) In the foregoing Section we compute F explicitly applying
the Langevin equation approach developed to derive Eq.

whence the mean, up = ±2nF/VE, and the variance of the (6).

ObtK) speed, <(u-u .)2> = (flE)-'; (iii) soliton-antisoliton
collisions are always destructive. In fact, the condition for
a soliton and an antisoliton to go through each other in the The rate in Eq. (11) may be re-written in a more suggestive form
presence of damping [11], F;> 2 ,3t , cannot be achieved in [2]:
the overdamped regime (remember that F < 1). In the fol- I)1Z' Z
lowing, we carry out our analysis under the condition y > 1, = - (12)
even though such an assumption is not always tenable when where Zo and Zv denote the partition function for the vacuum field
modelling real physical systems. This point will be discussed configuration and the critical nucleus, respectively. AEN (F) is the
further in the last Section. energy of the saddle point configuration 04x(x,R), which acts as the

On deriving the Langevin Eq. (6) we have assumed that potential barrier between the relevant stable configurations, the
the 'Pg(g) shape is stable under perturbation. This is not true vacuum, with zero energy, and the nucleated pair driven infinitely

when the soliton (antisoliton) is driven by an external con- apart, with energy 2E./I4 - ie, c, 2E.
, tThe quantities AFN(F) and A'(F) can be calculated within the

stant bias, which tilts the SG potential V[ ,thus changing Langevin equation approach. The interacting pair Ok(x + X) and
the effective ' sma frequency [4]: 1 1-j/ - F2 (in dimen- (x - X) at large distance obeys the equation of motion
sionless unit.,, tn order to ignore such corrections we re- W
stricted our calculations to the case of small biases F < 1. -k = -,X + - - 4e-2 r + Q(t) (13)
Actually, in deriving our results for the pair nucleation rate E0

(Section 3), we shall neglect corrections at the first order in obtained from Eq. (8) by inserting explicitly the attractive drift term
F. corresponding to the potential in Eq. (10). The barrier of the total

interaction potential VK r)(X) = -2nFX - 2Eexp(-2X) is lo-
Let us go back, now, to the pair nucleation mechanism. cated at

Thermal fluctuations may activate, with finite probability,
a nucleus Ov(x,X) of length 2X about the vacuum config- R(F) n- --n (14)
uration, 0 =0. For X> 1, Ov (x,X) is well described by the
linear superposition of a soliton and an antisoliton centered with u tture I JK,K,kR)I" 4att. MNouik~,jc, the SmoluOIosk1
in F, respectively, limit to Eq. (13) yields our estimate for the negative eigenvalue

/ hX\ associated with the unstable coordinate X(1):

(x,K) = O(x+XO)+ K(x-X,0) = 4tg-' -)41.F(F)=....(5
(9) E(15)
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We remark, here, that the linearization around the~top-of the-p6- whence, being 2°(k) = 11(k) M .(k),
tential barrier implicit in Eq. (11) [2] holds good only under the
futhierrestricti6n that D/y < [V9g(R)] 2/V&(R), i.e. Idet('o/2 ) 112 \1_2

(1) 1det'(fl YN/2Tc 2, _1)(4
2ep I >d 1 (16)(k) - n k ]  

I # 12(24)

being VKR(X) asoft potential [12]. "exP[ 2  dk(k)nv)(k)]-- 4 2y [, i)
Our-best estimate for AEN(F) has been obtained by calculating

SdxH[ON(x,R)] with O(x,R) given in Eq. (9) and R(F) in Eq. (14), Substituting Eq. (24) into Eq. (18) and Eq. (18) into Eq. (12) leads
to our final result [6]

AEc(F) =2E0 [1 ch2R(F)+ + sh2R(F)l ( (F) = 2 n7 [AE(F)] e EN(F) (25)

This is an improvement with respect to the estimate reported in
Ref. [6]. Ourpredictions (15) and (17) agree very closely with the where 4(F) and AEu(F) are known from Eqs. (15) and (17), re-
results of numerical integration [4]. spectively.

To accomplish our calculation of F we determine, finally, the
ratio ZN Zo in Eq. (12). For this purpose, we have recourse to the 4. Discussion
linear stability analysis [1], whence We comment, now, on the applicability of our estimateZNt 1 I det(pr0O/2n) 't12
Zo = I det(PYo2n) [AEN(F)]'". (18) (25) for the nucleation rate.

I Ti) Eq (25) applies only for small, finite values of the ex-

The linear stability operators ternal bias, i.e. fi 1 < F < 1. The upper bound, F < 1, allows
us to neglect effects 0(F2 ) due to the relativistic boost and

Yo = -al - 70, + 01 - V00[0] (19a) the rescaling of the plasma frequency. The lower bound,

and PFF> 1, instead, has been introduced in Eq. (16) to justify
the linear approximation implicit in Langer's formula (11).

Y", = - - y0, + 08, - V00 [ON(x,R)] (19b) This restriction amounts to requiring that the mechanical
energy needed to pull an isolated soliton (antisoliton)

have been obtained from the unperturbed SG equation by expand- through a distance of the order of its size is larger than the
ing the field 4(xt) at the first order around the vacuum configu- thermal energy, fl-, stored inthe critical nucleus [6]. Under
ration O(x,t) = 0 and the critical nucleus 4ON(x,R), respectively. such a condition pair nucleation is not described by the
The Goldstone mode of the operator YN has been subtracted from
det(flYNI2n), as denoted by the prime sign, ind its contribution linear response theory, as confirmed by the fact that F(F)
calculated explicitly [2,4]. For a full treatment of Eq. (18) the reader is proportional to VF for F-. 0. A realistic analysis of the
is referred to more detailed reports [6,8]. nucleation process at thermal equilibrium for vanishingly

In the overdamped regime we approximate the operators in Eq. small values of the bias cannot ignore the presence of many-
(19) as follows body effects as pointed out in Refs. [5,6].

= -Y, + a - V[0( (ii) Corrections to F(F) are expected at the first order

Yo = -yD, + 3, - V00[0(x,] (20) in F. For instance, in Eq. (18) the discrete eigenvalue of
YN,y2.(F), has been set to one. In fact, we can give an up-

The eigenvalue spectrum of Yo is [1] per bound to y).(F), on substituting the potential

y(k) = k2 + 1 , k 0 . (21) VOO[O(x,R)] in Eq. (20) with the square well potential

The eigenvalue spectrum of Y,, instead, consists of a negative ci- V(X) = I for lxi > R(F) (26)
genvalue y).(F), with 4(F) given in Eq. (15), a zero eigenvalue = V,[it'N(O,R)] for lxi < R(F)
corresponding to the Goldstone mode, yA2(F) = 0, a discrete ei-
genvalue y).'(F) and a continuum where V,[ON(0,R)] = 2[2/chR - 1]2 - 1. For large values

y)N(k) = 0 + I , k -_ 0. (22) of R(F), i.e. small values of F, i7(X) admits of one discrete

eigenvalue, which can be approximated by 1-27rF. Since
The discrete cigenvalue 7m(F) represents an internal oscillating P1(X) > Vo,, [ON (x,R)] for any value of x, it follows that
mode of the critical nucleus and follows the removal of the degen-
eracy at the continuum threshold, 7).1(0), due to the finiteness of
the nucleus size. Of course, 0 < yA2(F) < 1. For small values of F y).2 (F) < I - 2rF. (27)
we retain the F-dependence of Ao(F), only, whereas y)2"(F) is set
to one and, thus, incorporated in the continuum. This amounts to A preliminary estimate of the F-corrections to Eq. (24) can
approximating the continuous branch of the eigenvalue spectrum
of IN with twice the eigenvalue spectrum for the simple soliton be obtained by noting that expression (9) for OA (x,R) co-
(antibulitun) stability operator, wii.h i analyti.ally olvAble [1]. incides, formall), %Nith the constrained (maximum amplitu-
In particular, the difference of the .untinuum btate densit) fur r, de) breather bolution [1] of the unperturbed SG equatiun,
and Y1 at F= 0 is

A(k) - O(k) - oN(k) = 4 1 (23) OB(x,v) = 4tg- 1 vch - • (28)

it k 2 +1
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where (1 + 02)"2 ln(2/v) = R(F) or,,equivalently, of Kramers' theory to the underdamped limit of the problem
of pair nucleation in thermalized SG chains is still an open

v2 ,,, - F (29) problem.
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Soliton - Assisted Activation Processes
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This paper deals with the problem of energetic activation of one or few degrees of freedom of a spatially
extended system. The fusion of soliton-like excitations is an efficient nonlinear mechanism to generate
high-energy events at soft springs which are embedded in a one-dimensional chain of hard springs. In
equilibrium there exists an optimum temperature where thermal energy is mainly partitioned to the soft
springs due to the superposition of thermally generated solitons. Some of the features obtained for the

one-dimensional system also apply to a solution of soft spheres in a hard-sphere solvent.

1. Introduction activation coordinates has to be provided by the surround-

Energetic activation proves to be an essential precondi- ing system. The first complete theoretical treatment of an
tion for a multitude of processes to take place. Obvious activation process is contained in the famous paper of Kra-
examples are chemical reactions or the cracking of materials. mers [1].
In the following we will define activation processes as high Let us start with an elementary consideration of classical
energy events appearing at one or a few degress of freedom activation processes in one degree of freedom The energy
of a spatially distributed system. The energy gained by the corresponding to the motion along the activation coordinate

r0 is assumed to be

*) Current address: Forschungsanstalt fir Forst- und Holzwirt- 2

schaft Eberswalde, Alfred-M61ler-Stral3e, 0-1300 Eberswalde, E0 = 
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As special models for the shape ofthe potential-energy func- H = + a
tion we will use the linear oscillator potential and the non- H (2m + b [exp(-b(.v+,- (2.-)
linear Toda potential [2], the latter -one modelling a, wide (2.1)

ciass of.empirical molecularpotentials consisting of a steep + a(.v+l - y.).
"epulsive and a long-range attractive part: Here the notation is related to that one used in (1.2) by

VO ab, = raw,2 . For an infinite uniform chain (b, =
= (,0mro, (1.1) bVns(-co, +oo)) Toda found the soliton solution [2]

p 1+( exp(-b0 I. - y,,))- I = sinh2 u (2.2)
')(ro) " -b-o (exp(-bo ro) - I + bo re) (1.2)

sech2 n - r-- sinhxt),
In i

The parabolic approximation (1.1) can be obtained from
(1.2) for a vanishing stiffness parameter bo. Now we are going with energy
to consider an- activation coordinate embedded in a canon-
ical heat bath. Within the classical approach we find from 2a
(1.1) and(1.2) for the mean energies = (sinh coshu - u). (2.3)

= I1 , The soliton corresponds to a local compression of the lattice
2 kT, (U1 (ro)> = 2 kT, with spatial "width" u-1. The quantity

(U11(ro)> = 11 X)
wher n  kTbo ,] -'Tb26' T sinh (2.4)

where defines a characteristic excitation time of a spring during
d soliton passage. The energy of a much energy containing
- ln'(x) and, therefore extremely localized soliton satisfying the con-dition

denotes the so-called Digamma function. From the above sinh2 x
expressions we find X > 1 (2.5)

(U"N(ro)> > <U2 (ro)>" reads according to (2.3) and (2.5):

Hence there is no way .to get an average energy exceeding
k T at a single degree of freedom for Toda-like potentials. Es -_ sinh2-% (2.6)

In this paper we present a contribution towards a theory b
of nonlinear energy localization mechanisms thereby re-
stricting ourselves to the investigation of simple classical Now we consider a system consisting of two semiinfinite
models. The following part of the paper is dedicated to a Toda chains of different spring parameters, b, = b V n < 0
brief description of a dynamical effect - the soliton fusion and b. = bo V n > 0 with bo < b. Although this nonuniform
- allowing energy localization at a defined site of a non- chain does not admit exact soliton solutions, the solution
linear molecular chain. This effect could be involved in the [2.2] cait be conceived as a right running solution on the
catalytic processes occuring in complex reaction systems un- hard part with b far to the left of the interface where it
der nonequilibrium conditions. In the subsequent section we behaves as in a uniform chain. In the vicinity of the interface
will show that the superpositi n of thermal solitons may however it will be scattered and evolve into reflected and
lead to an activation enhancement even in equilibrium. Go- transmitted vvaveb including both bolitonb and radiation
ing beyond the special one-dimensional system presented so [3,4]. In particular we observe sufficientl far to the right
far, we will argue finally that the phenomenon of thermal on the soft part the formation of a transmitted ohiton that
energy localization could be of a more general relevance to was evaluated in a previous paper [3].
the theory of activation processes.

exp(-bo,.+ 1-y,))-1 = sinh2 .o

2. Soliton Fusion as a Mechanism of Energy Accumulation

Now we are going to consider the dynamics of a non- -sech2  
- sinht

uniform chain of masses at position y which are connected - + (2.7)
to their nearest neighbors by Toda springs with the nonlin- 2 bo

ear spring constant b,. The Hamiltonian reads sinh ;o = -T-sinh2'.
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The last expression relates the transmitted soliton to the concentrations of potential energy at the soft spring [3].
incident one. 6 denotes aconstant phase shiftthat occurs Interpreting a compression of this spring up to a certain
dueto the scattering process. In case of strong localization critical value as activation process we have got a novel
of both incident and transmitted soliton we find from (2.7) mechanism to accumulate the energy. of nonequilibrium ex-
and (2.6) for the energy E of the latter citations at a selected degree of freedom to be activated. In

a previous work [5] a simple model of global enzyme struc-
2a ture was invesLigated in order to demonstrate the mainte-

Eo t -sinhlx ;t El.b - nance of the main features of the effect for a chain of in-
homogeneous molecular units interacting via Morse poten-

Hence the energy of the incident soliton is almost completely tials even in the presence of frictional forces and realistic
transferred to the transmitted one, i.e., scattering losses are potential parameters. A soft Morse spring was used to model
less important for energetic solitons. From (2.2) and (2.7) we the linkage between catalytically relevant molecular groups

-find according to (2.4) for the characteristic times r and To of the enzyme.
of the incident and the transmitted soliton, respectively, the
,simple relationship 3. Statistical Thermodynamics of the Nonuniform Toda

Chain
'0 _ b (2.8) 'In the last section the fusion of solitons was introduced
T b0 as a special nonequilibrium effect which is suited to support

local activation processes. Now we will give a brief summary
The existence of different time scales of soliton motion can of some recent findings [6] proving that an activation en-
be used to generate high energy events by soliton fusion hancement occurs even in thermal equilibrium due to the
which was demonstrated numerically [3]. The energy of two fusion of thermally generated solitons.
strongly localized solitons of equal magnitudes impinging We consider a nonuniform Toda chain (2.1) of N particles
on the interface will be contained afterwards mainly in one which is fixed at the left hand side 00 = 0) and introduce a
soliton transmitted to the soft chain provided the incident pressure P acting on the right end particle G's). Among the
solitons were separated from each other by a time less than N springs may be No soft springs with spring constant b0,
To on the hard chain, After changing to spring coordinates, r, = y. - y,_, the

exact classical partition function can be calculated as for the
uniform Toda chain [2]. Using the notations l = 1/kT,

3 y = PkT, we obtain/N
2 Z ~Fi~ 1 f dfla- ) ,

N'

0I 2tit b.

29~ ( 2
anjI 2 [jex(Pa)(j (pa+4 ') r(fla+v)N7

Vfrn) [W.ex a p a /* r(fa 7 I 31ri / \ / ,a- -v, ) 0'~y1
0 1 23

Fig. I The partition function splits into separate factors corre-
Superposition of two solitons in a single soft spring (it -0) embed- sponding to hard and soft springs. The internal energy of
ded in a hard Toda lattice (in = 1 .... 29) with parameters ni = 2,
a= 10-2, b = 102, b/b 0 = 10. The solitons (each of energy E = 1)
are separated from each other by a time 8.4 r on the hard lattice
initially (T is the characteristic time (2.4)). the potential energy of 0 N
springs is plotted vs. time t and spring number n E -- nZ(fl,) + (N-No) <it + No(u0>,

Now we consider a single soft spring embedded in a sur- with
rounding, otherwise uniform hard chain ((2.1) with b, =
b Vn *1 0 and bo < b) instead of the interface between two (u1> =--[In (P -1) -+\~
extended chains of different stiffness. It *urns out that this b bL b j b
only soft spring is able to trap and superpose narrow soli- and (3.2)
tons impinging from both directions within characteristic / a- I) ( ' ]-P
excitation time ro which is demonstrated in Fig. 1. We only ("o> = [I .n (#, - P a+ P]
note that this kind of soliton fusion leads to considerable ,, 11 bo
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expressing the average potential energies of a hard and a orem is valid and thermal energy is shared equally among
soft spring, respectively, all microscopic degrees of freedom. Between these limits

Now we are going to elucidate soliton-induced effects in there is an optimum temperature where the potential energy
the thermal behaviour of nonuniform Toda chain. Because of soft springs amounts to a multiple of k T/2 and locali-
solitons are destroyed at open ends, we are led to fix the zation of thermal energy takes place.
total-length of the chain, which can be calculated from the The peculiarities in thermal behaviour of a nonuniform
partition functions (3.1). Assuming further a vanishing num- Toda chain can be attributed to the properties of solitons
ber of soft springs embedded in a chain of hard springs, i.e. which are the nonlinear modes of moeion. Bolterauer and
a strongly "diluted solution" q1 = No/N -0, whereas N--- co Opper [7] reconstructed the free energy for a uniform Toda
and No --* o, one obtains for the pressure [6] chain from a gas of noninteracting solitons. This approach

yields reasonable results, in case of a fixed total length as
P=b Pu-1 In a)] a (3.3) temperature T tends to infinity. On these conditions N

b (strongly localized solitons - each of average energy kT2

- are excited on a lattice of N springs. Hence each soliton
By the help of (3.2) and (3.3) we can now calculate the av- possesses an average potential energy <u,> equal to the
erage potential energies of the springs. Especially in the high- spring energy <u>. The average distance in time between
temperature limit the ratio of the average potential energies adjacent solitons can be obtained from (2.2),
of a soft and a hard spring yields

00o> b(. T = (3.5)
3)T<u p'. ab sinhx"

The ratio of spring energies as well as their absolute values Using (2.5) we can approximate the average potential energy

in units of thermal energy are presented in Fig. 2 in de- of a hard spring by

pendence on temperature. In the high-temperature limit +r2 a h T sa
thermal energy is partitioned mainly to the kinetic degrees <u> 1 dt - sinhl sech sinhxt)
of freedom. Whereas the ratio of potential energies of soft T 12 b ifl"b

and hard springs tends up to the maximum value defined 2a sinh2x
by (3.4), the ratio of potential and kinetic energy tends to -

zero. Hence only a vanishing part of thermal energy is lo-
cated at soft springs. At low temperatures equipartition the- On the other hand the average energy of one soliton equals

1/2/ if fl-*0. With (2.6) we find

2a .2 1 1
(->b si 2f% ;z

hence

#<It> 2arcsinh 1) --1 0.

P (U-> Due to the perfect repulsion between particles the extremely
narrow and fast solitons dominating the dynamics at high
temperatures do not contribute to the average potential en-
ergy of springs but to the kinetic energy of particles.

+u 0' ,2 • .6 Now we are going to consider the average potential en-
log pergy (uo> of the soft spring. Solitons are transmitted to it

Fig. 2 with an average period 11T given by (3.5). In the high-tem-
Average spring energies of soft and hard springs in a nonamform perature limit every excitation of the soft spring can be de-
Toda lattie mlth fixed ader.Ige lkngth kJ. Fig. 1) in dvpendcn , on scribed b) a strongly localized transmitted soliton (2.7) and
p = IlkT. we get
a) The mutual ration of spring energies for two different concen-

trations 'i = No/N of soft springs. Maximum deviation from equi-
partition of potential energies is obtained in the high-tempera- 1 +

1 2 d  ( s abo5 t .(-.ih2oseh -iho r
ture limit for a vanishing number of soft springs. (10 J d -Ti2 b_ 2n

b) Spring energies in units of thermal energy for a vanishing num- 7

ber of soft springs ('i = 0). In an intermediate temperature range asinh2' b
beyond both the harmonic and the hard-core limit a localization , 2 0 <1 b >.
of thermal energy takes place at the soft springs x
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This, is the result-(3.4) derived, above So the, tw6fold devi- The transition rate for the coupled nonlinear reaction os-
ation from equipartitionofefergy can be explained bynon- cillator follows from (3.6):
interacting solitons in the limit of infinite temperatures.

In the intermediate temperattire'range that is character- #mC'(-+.
izedby a' localization of thermal energy at the soft spring nbo
non-soliton modes/participatein, the dynamics too. But ob- 'kAsT 2

viously solitons areresponsible for the transfer of-thermal V F r ( f- +
energy to the soft springs. This can be understood intui- I \ 0  + (3.8)
tively. In the high-temperature limit discussed above the [ ( 2

mean. time T between incident, solitons was much~greater .expt. - AU +Pr + bw "
than the time To describing the duration of incidence, i.e.

>To >,r. With' decreasing temperature thermal solitons Here the condition f#(A U + Pro) > 1 has to be fulfilled in
become less localized' and both times will be-,comparably. order to applicate (3.6). The reaction oscillator may be en-
Thus a substantial superpositionof incident solitons as pre- closed by a sufficiently large Toda ring with parameters a,
sented~inFig., I takes place in the soft spring giving rise to b and m. Then formula (3.3) defines the force P in (3.8). At
the elevation of average potential energy for intermediate low temperatures the rate (3.8) reduces to the result (3.7).
temperatures. At low temperatures however strong inter- The top of the barrier may be located at a negative reaction
action is no more confined to the soft spring and individual coordinate, ro = - Irol, corresponding-to a critical mutual
solitons are destroyed. distance between reactive molecular groups. Then with in-

At the end of this section we shall discuss the possible creasing temperature a considerable rate enhancement is
relevance of thermal energy localization to reaction theory attained (Fig. 3). The arbitrarily chosen reaction coordinates
within the frame of simple transition state theory. We con- in Fig. 3, e.g., could be related to catalytically relevant slow-
sider an ensemble of particles moving in an initial well with frequency motions observed in enzyme macromolecules [5].
an adjacent barrier of height A U forming the boundary of Recently Muto et al. [8] calculated a significant number of
the well. TST assumes all states in the well and around the solitons generated at physiological temperature in a Toda
barrier being populated according to equilibrium distribu- lattice model of DNA with similar spring parameters as used
tion. If U(ro) models the shape of the potential inside the in Fig. 3. If thermal solitons are present in biomolecular
well and flA U > I we obtain forthe rate of transitions over strings they are likely to support energetic activation of func-
the barrier [1] tional processes.

+00

I dpo "P exp(-flH(po,ro)) b-,qb, o/O o, /5
krs" = n? (3.6).

dro S dpoexp(-f#H(po,ro)

ro denotes the top of the barrier and U(ro) = AU. Approx- jog s
imating U(ro) by a harmonic potential (1.1) we get the well 2
known formula [1]

k= = - exp(-flAU). 
(3.7) b.-_b15, ______ _______

2iz ii O i o ii

Now we consider a reaction oscillator coupled to a nonlin- log [p "Nm]
ear molecular chain. The shape of the well may be described Fig. 3
by a Toda potential (1.2). According to the assumption of Enhancement of a hypothetitl slow-frcquency transition process
TST the reaction oscillator is in thermal equilibrium with (nW -aibo) by coupling to a hydrogen-bonded molecular chain

its surroundings, which is here represented as canonical en- with bond parameters fittcd to a Toda potential, a = 5.6- t0-ON,
b = 9. 10n - l (moo = ab) according to transition state theory. The

semble by the effective Hamiltonian relative barrier height #A U = 20 was chosen to be constant all over

the temperature range. The dot on the abscissa marks physiological

2 temperature (310 K) and the arrows indicate the maxima of relative
H(po, ro) = 2m + U(ro) + Pro. potential energy fl(u 0>

Physically this result can be interpreted in the following way. 4. Activation Processes in Solutions of Soft Spheres in a
The soft reaction oscillator behaves as subsystem in an iso- Hard-Sphere Solvent
baric-isothermal ensemble [10]. In other %ords the action Let us first ,onsider a linear chain of hard balls in contad.
of the hard springs may be reduced to the pressure the) Ab e'er)bud) knuokb from popular expetiments at w-hoolor

produce in the system. the basic course in physics, a kicking of the first ball leads
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to, an excitation running throughthe chain thereby-leaving Inserting (1.2), (4.1) and (4.2) we obtain
the intermediate balls essentially at rest. When the excitation
arrives at the, opposite end of the chain the outer ball is 2 r2
elongated. This experiment is a simple demonstration of a <uo> = In Ln(
soliton-like excitation. If we put a soft ball into the chaint. (4.3)
the excitation will be kept there for some time performing M(OO . C(o)YK C(e)
an elastic deformation. It should be possible to demonstrate - b\ A+  bop
also fusion effecis of the type described briefly in the second
paragraph and in more detail in a previous paper [3] with Now we are going to consider the part of thermal energy
such a simple device (there are however no experiments partitioned to the soft spheres, fi<u0>, in dependence onknowntone to the authrst sphres soft> in deprvesc onakido
known to the authors). The soft ball serves as a kind of temperature. Especially for high temperatures we find from
buffer accumulating collisional energy. The result of the ac- (4.3)
tivation could be, e.g., a destruction.of the soft ball after a
critical compression. The theory developed in the previous
section applies qualitatively for the prediction of the destruc- #(Uo> ;o' C(e)
tion rate. Pl0o p-o

Conclusively we want to illustral. that the feature of a
soft volume part, to get activated by accumulation of colli- Depending on this value we find qualitatively different be-
sional energy is not restricted to quasi-one-dimensional sys- haviour, as can be seen from Fig. 4. For C(g)/bo > 0.5 the
tems, even if the interpretation of such an effect by solitons havour, a ne see nr sig .nForously 0.thor solitary-like excitations will not be applicable to the-relative potential energy is increasing monotonously with

or oliarylik exitaion wil nt b aplicbletothree- temperature, in the idealized case of a Hooke's compression
dimensional systems generally. Let us consider'a solution of lee n bouded cre if a anishinr- law even unbounded (see curve I in Fig. 4, a vanishing
soft spheres in a hard-sphere solvent as simple model for a stiffness bo = 0 corresponds to the potential-energy function
binary mixture of "soft" and "rigid" molecules. We do not F b < 0 oset the otentia y funtio
start with a microscopic description as for the Toda chain (1.1)). For C(eo)bo < 0.5 however the curves display a max-but simply assume the validity of the compression law (1.2), imum corresponding to a localization of thermal energy at
where now the quantity r0 denotes the deviation of the vol- a finite temperature. A comparison of the curves 3 and 4

whee nw te qantty o dnots te dviaionof he ol-shows, that these maxima are raised and shifted towardsume v0 of the spheres with radius R0 from its value v °) at sho thatue maim areaise and softe rs
zero temperature for increang stiffness of the soft spheres.zero pressure and zero temperature: This behaviour is due to the , omewhat artificial assumption

ro = Vo -vP Vo = 4 Ro . (4.1) of an infinite stiff hard-sphere'potential even for vanishing
3 temperatures. A more comprehensive discussion on solu-

The parameter b0 describes the stiffness of the soft-sphere tions of soft spheres in stiff solvents will be given elsewhere.
volume now. The soft spheres may be embedded in a solvent However already this present short analysis indicates that
of (absolutely) hard spheres. Then in the limit of infinite some of the main results abtained for the Toda chain persist
dilution the pressure P in the solution equals the hard- in three-dimensional systems.
sphere pressure, which reads in the Carnahan-Starling ap-
proximation [9]: .1

P = I1 +f+)P = C(Q)f. (4.2)
p~f 0 _f)3

Here t t

4QR3

denotes the packing factor of the hard spheres with radius
R and o is the density. Considering an ensemble with con-
stant densi, y the pressure P proves to be a linear increasing
function of temperature #-I. Following now the analogy
explained in the previous section the soft spheres may be 0- 2 0 I
considered as subsystems embedded into an isobaric-iso-
thermal ensemble. Then the average potential energy of an 1o0 ,. -

embedded soft sphere can be calculated according to Fig. 4
+<* Average potential energy (in units of thermal energy) of a soft Toda

dro U(ro) exp[-fl(U(ro) + Pvo)] sphere which is surrounded by a constant-density ensemble of hard
_ _ _spheres (C(e) = 1) according to formula (4.3) vs. temperature Pl.

0uo = The eigenfrequency of the soft sphere is given by mow = I and

I droexp[-3(U(ro)+Pvo)] the stiffness parameter bo varies for the different curves. I -bo = 0,
-00 2 - bo = 1, 3 - bo = 10, 4 - bo= 1000
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-5. Conclusions energy localization for three-dimensional systems could be

The dynamical effect of soliton fusion provides an efficient of a principal interest to reaction theory.
mechanism for localization of as well thermal as nonthermal
energy at,. activation sites that are part of a nonlinear mo-
lecular chain. We proved the existence of an optimum tem- References
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Hopping of Quantum Particles on Crystals with Energy Disorder:
Influence on Spin Resonance

P. Reineker and J. Kihler
Abteilung Theoretische Physik, Universitit Ulm, Albert-Einstein-Alice 11, 7900 UIm, Germany

Diffusion / Disorder / Energy Transfer / Spectroscopy, Electron Spin Resonance / Transport
Properties

For spin 1/2 quantum particles hopping on energetically disordered lattices paramagnetic lineshapes and
free induction decay (FID) signals are calculated as a function of the hopping rate 7 between nearest
neighbours. The energy disorder is modeled by local magnetic fields chosen from a Gaussian or dichotomic
distribution, For motion on a linear chain it is derived - using a continued fraction method - that the
FID signal shows a cross over from an exp(-t 1 " ) law to an asymptotic exp(-t) behaviour. Preliminary
investigations for 2- and 3-dimensional lattices have been performed using algebraic multigrid methods,

1. Introduction anthene units, electron spin resonance (ESR) properties, e.g.
In recent years organic metals [1] have been the subject the electron spin echo (ESE) decay, are influenced by the

of many experimental and theoretical investigations. One of motion of the charge carrier. ESE decay measurements for
the aims of these investigations was to understand the trans- (FA)2' [(SbF) 1 -, (PF)X] -, x , 0.5 [3] show that the ESE
port properties of charge carriers. In these materials, e.g. the signal decays according to exp ( - t ") for small times and
fluoranthene radical cation salt (FA)2PF, the organic ions purely exponentially for large times. In [3] this was inter-
(donors) are frequently arranged in stacks with the inorganic preted as a transition from 1- to 3-dimensional motion of
counterions (acceptors) sitting between the stacks [2]. The the particle. On the other hand the ESE in (FA)2PFb [4]
charge transport is assumed to occur in a quabi-one-dimen- deca)s in a purely exponential manner. Thub, from experi-
sional manner along the organic stack. mental results the question arises %hether and w hy the ESE

One way of getting more detailed information on the decay occurs according to exp( - (,t)"') or as exp( - 7t),
transport of charge carriers is from the in% ebtigation of spin A similar question comen up also from theoretical imes-
resonance. On a,count of the intera,,tiun between the spins tigations of the free induction deca) (FID) which for ho-
of the charge carrier and the protons localized in the fluor- mogeneous b)tems .ontains the same information as the

Ber. Bunsenges. Phja. Chem. 95 11991, No. 3 1, I -CH Verlaytge.eluhaft nbH., W-6940 ehun.i, 1991 0005-9u21, 91,0303-0362 S 3.50 t.25;0
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ESE decay'for inhomogeneous ones. Analytical investiga- which means that in our model calculation we have taken
tions in.[5] arrived at the conclusion that the FID decay into account only the contact interaction (A is the hyperfine
occurs as exp(-(yt) 2), Monte-Carlo simulations carried coupling constant). To complete the model description, we
out in [6] led to the conclusion that at least asymptotically mention that lateron in the numerical evaluation we shall
the decay follows an exponential law. One of the purposes replace the quantum mechanical hyperfine structure inter-
of this paper is to show that there is a crossover between action Hamiltonian by a simpler Hamiltonian with frozen
the two decay laws. proton spins,.whose orientation along the z-direction is ran-

dom. For this ,simplified model the Hamiltonian becomes
2. Theory of ESR Line Shape and F'ee Induction Decay (
2.1. ESR Line Shape and Free'Induction Decay n n

From linear response theory the ESR line shape is given
by the imaginary part of the magnetic susceptibility 2.3. Analytical Evaluation

1 /e, 2  In the framework of the Mori-formalism [10] the equa-

x"(0o) = 'm (1 -e - f'l) Re 5 dt e " (S- S+ (t)> tion of motion for the FID decay function is given by
2 N0in o (1 )

F(t). P(t) = i 92F(t) - i dr'M(t - t') F(t') (8)
0

N is the number of unit cells, e and im charge and mass of
the charge carrier, p = (kT)- ', and F(t) = (S- S (t)> is 0? = (S+,LS+).(S+,S+)- (9)
the two time correlation function which describes the FID:

M(t) = (i2L"S+, iTe ldtQL() i QL'S).(S+,S+)- '. (10)

F(t)'= <S- S +(t)> = f dtci °' F(o). (2)
-0 In this equation ? is the frequency, M(t) the memory func-

tion, andL theLiouville operator. TM is the decay constant
The comparison with (1) shows that - apart from constant for the memory function, and T the one for the free induction
factors - the ESR line shape is given by signal.

If the memory function is evaluated in Born-approxima-
F(_) = 140) dte "" F(t) = Re-So dte - UFt). tion, we arrive at

(3)A 2 1
M(t) = ea' - (a+ aoT exp iS dt'L(t')) a+ ao>

2.2. Model Hamiltonian 40 / (11)
The Hamiltonian of our model is given by = C L P(t).

H = , a,+ an + woS' + H" (4)
nxf

S , . The inspection of this result shows that P(t) is the condi-
incoherent electron Zeeman interaction tional probability of finding the particle at the origin at time

transport t, if it was there at the initial time: P(t) = P(r = 0, t; r =
0, t = 0). The analytical results [5,11,12] are summarized

The first part describes the hopping motion of the charge in the following.
carrier. The It,,. (t) are the fluctuations of the transfer matrix If the decay time of the memory function is much larger
element (in the sense of the Haken-Strobl model [7 - 9]) and than the decay time of the correlation function, i.e.
mathematically described by a 5-correlated Gaussian proc-
ess with correlation functions TM > rC, or y/A << 1, (12)

<hn.n~,(t) Ih. :i(z')> = h,., 1 (t) hi, (t')> (5) which describes the ease of slow particle motion, the ESR

= 2y (t- t'). line is inhomogeneously broadened with the inhomogeneous
width determined by the hyperfine structure interaction. The

The next term is the Zeemann energ) of the charge carrier homogeneous % idth of one component is determined b) the
spin in an external magnetic field. The last term finall) de- life time of the -.harge arrier at a particular site, i.e. b) the
scribes the hyperfine structure interaction between the elec- hopping rate y.
tron and proton spins. Explicitely, this term is given b) In the opposite limit %hen the de,.a) time of the memory

function is much smaller than the decay time of the corre-
H' = A 7 Sla+ a, lation function, i.e.

n(6)
= AY. (SI; +S+I, +S-I+)a+a. '2 rNJ < TC, i.e "/11A > I1, (13)
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describing the case of fast particle motion, the FID decay 3. Numerical'Evaluation of Spin Resonance Properties
functioncan be taken 6ut of the ,integral in [8]. In the 'Writing out explicitly [2] we get
interaction representation, we finally arrive at

F(t) = (nslS- Texp Ji i drL(r) S+ RwOoIlns>.
F(t) = - S dt'ft(t') (t) -i 0 )

0 (14) (21)

= eipi- dt'(t- t') , The states Ins> describe a quantum particle -at site n with
0 spin s, o is the density operator at the initial time and the

index RW means averaging over the random walk. Assum-
where the expression on the righthand side is the, solution ing as initial condition equal, occupation probabilities at
,of the differential equation on the left. For sufficiently long each lattice site, (21) may be written as follows:
times and taking into account that in the case considered
the, memory function decays fast, the second term in the 1 Tex (F ~ t) = N ( J , n l r e x -i L ( ) S - R w l l ") ( 2 2 )
exponent can be neglected and asymptotically-we arrive at N n w
an exponential decay of the correlation function:

I
en W (23)

Pt) != exp t tdt (t').(12

The functions c, (t) are defined by the last equality, and are
to be determined from the following set of differential equa-

After this rather general consideration, let us investigate the tions:
influence of the dimensionality of the motion on the FID
decay. In the case of the purely incoherent motion the prob- d, (t) = (io, - 4y) c, + 2y(c,+ + c,- 1). (24)
ability of finding the particle at lattice site n is given by the
modifiedBessel function of order n [13], if the particle was In matrix form this equation reads
at the origin at the initial time. Therefore P(t) from above
is given by the modified Bessel function of[ order 0. We 6 = Ac. (25)
therefore have

A2  inuum In this equation A is a matrix with random diagonal ele-
AR(t) = -- e-710(4yt) (8nyt)-- z1 (algebraic decay) ments co,. After a Laplace transformation this set of differ-

ential equations is transformed into a set of algebraic ones.
(16) For motion of the particle in one dimension, this equation

is tridiagonal and can easily be solved with the help of con-

where the expression in the righthand side describes the tinued fractions. For 2- and 3-dimensional motion we have
behaviour in the continuum limit. If this is inserted into [141, used multigrid methods [14].
we get for the FID decay Fig. I shows line shapes calculated for motion of the particle

on a linear chain with 10 sites for dichotomic disorder of

t)= exp(-(Adt)3 ) dimension d: I . (17) the local magnetic fields and various hopping rates, nor-
malized to the strength of the local magnetic fields (strengths
+ 1, i.e. a = 1). For very small hopping rates as compared

In the case of independent random motion in the various to the strength of the local magnetic field, i.e. y = 0.1, we
space directions, the probability is given by the product of have two ESR lines with positions determined by the two
Bessel functions with a corresponding behaviour in the con- values of the local magnetic fields. The width of the lines is
tinuum limit. The calculation of the FID then gives given by the life time at the site and thus determined by the

dimension d: 2 and 3. (18) hopping rate y. When y becomes comparable to the distance
(t) = exp(-(Awt) dimin the line positions (y = 0.5), the two lines merge into a

single line. With increasing hopping rate (y = 10, 100) the
Eq. (17) is just the result obtained in [5]. The evaluation of line narrows; the narrowing, however, is not c y - 'but given
the ESR linewidth in dependence of the dimension results by (19). Furthermore, the comparison with the dashed Lor-
in entzian line in the figure for y = 100 shows that in this

range of the hopping rates the line shape is not Lorentzian.
Acod = - = ((KwD 2/y)P dimension d: 1 (19) Increasing y further, the ESR line becomes structured. The

T% origin of these structures are clusters in the dichotomic dis-
tribution of the spins [12]. Increasing the hopping rate fur-

Acod =1 = (co;> 2I/y dimension d: 2 and 3. (20) ther to Y = 10'0, these structures are finally averaged out
LC and we arrive at a Lorentzian line, whose width is oc y-'.
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Fig. I
Line shape as a function of the hopping rate y' for a 1-dimensional motion and dichotomic disorder (or 1 , N =10)l

Fig. 2 shows the FID signal for a chain with N = 10' tion of t. In the lower row we have represented F(t) in a
,zites (to avoid finite size effects), a hnpping rate )'=1000, logarithmic scale as a function of t"- in the left figure, and
and a Gaussian random distribution of the local magnetic as a function of t on the right hand bide. The comparison
fields. The curves are obtained by, Fourier transforming line %Nith the dashed straight line bhoNs that for short times the
shapes obtained as described in connection wvith Fig. 1. In FID signal decays according to an exp(- (, t)" ) lawv and for
the left figure in the upper row, F(t) as a function of t is large times as exp(- ,t). Therefore our calculations show
represented and shows the decay, of the FID signal. The that %%e have a crosso, et bet ,een the two de ay, la ,,, and
figure on the right hand side shoN s ( --lnF(t)),'t "-as a func - that the anal) ti,.al result of [5"] holds foi bhoft times % hereab
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Fig. 2
Free induction decay F~t for Gaussian distributed local fields and 1-dimensional motion of the particle on a chain with 10" sites. Hopping
rate y =1000 in units of the standard deviation of the local magnetic fields
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Fig. 3 Y
Free induction decay time as a function of the hopping rate yj in I dimension

the simulation result of [6] is Nalid asymptotically. Fur- From the analysis of the numerical line shapes Ave have
thermore our results also show~s that the transition bet" cen derived the free induction de,.,ay time (maximum of the nor-
the two decay laws can also oc%.ur for purely 1-dimensbional malized line shape curse) as a funition of the hopping rate
hopping and does not necessarby allow the conclusion that for a chain Nwith N = 10' sites. The plot of %,i,'"~ as a
there is a transition fiom 1- to 3-dimensional motion, function of , in Fig. 3 on the Iefthand side shows that for
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Fig. 4
TcI as a function of the hopping rate y for a 300 x 300 lattice (left figure). The two curves correspond to two realizations of a Gaussian
process. The figure on the righthand side shows the same quantity for a 28 x 28 x 28 lattice. The full curve represents a Gaussian
distribution, short dashes a dichotomic process, long dashes an analytical calculation in the framework of the Mori-formalism

small values of y the correlation time-,is proportional to curves correspond to a Gaussian and a dichotomic process,
T'3 and thus the linewidth is proportional to ?- 113, On the respectively. The short dashed curves are analytical results
other hand from the figure on the righthand side we see that obtainedfrom the Mori-formalism.
for large values of y the correlation time is proportional to
7 and the linewidth therefore proportional to y- 1. 4. Discussion

Fig. 4'shows preliminary numerical results for the nor- Fig. 5 gives a summary of the paper. For small values of
malized correlation time T,/7 for 2- and 3-dimensional lat- y/A we have inhomogeneously broadenedESR lines, whose
tices obtained [II] with the help of multigid methods [14]. width is determined by the distribution of local magnetic
From the figure for the 2-dimensional 300 x 300 lattice we fields modeling the hyperfine structure interaction. The
see that for y > 100 (the hopping rates are normalized to width of a single component in the inhomogeneous distri-
the standard deviation of the local field) T, oc y, i.e. the line bution is determined by the time interval the particle spends

is motionally narrowed and Lorentzian. The two curves in at a specific lattice site, i.e. by the hopping rate. For s/A n

the figure on the lefthand side correspond to two realizations I we have a coalescent broad line. In the following range of

of a Gaussian stochastic process. The figure on the right the hopping rate the FID is described by an exp(-t ) law,

shows also T;/, however now for a 28 x 28 x 28 lattice. In and asymptotically by an exponential function. The width
this case r7 , as soon as y > 10. The full and long-dashed of the ESR line is proportional to y-1. In the range y/A R

N, where N is the number of sites in the chain, we observe
single lines (inhomogeneous broadening) cluster effects. For still larger values of the normalized hop-

1 coalescent broad lines ping rate, for which the particle probes the whole chain, the
FID is described by an exponential function. The line shape

exp (-t3 2) behaviour is now Lorentzian because of finite size effects. Finally, it
should be mentioned that the transition from 1- to 2- and

narrowing Aw o y-1/3 3-dimensional motion also results in an exponentially de-
caying FID.

exp (-t) behaviour for t -- oo

N This work has been supported by the Volkswagenwerk Foun-

cluster effects dation. The authors are grateful to H. Diiubler and G. Glatting for
discussions.
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Anomalous Diffusion in Disordered Systems: An Effective Medium
Description

Walter Schirmacher
Physik-Department E13, Technische Univefsitiit Mfinchen, D.8046 Garching, Germany

Amorphous Materials / Diffusion / Electrical Properties / Glasses / Transport Properties
The effective medium theory of diffusion in topologically disordered systems is reviewed with emphasis
on the description of disorder induced anomalous diffusion. The effective medium approximation (EMA),
for which a new derivation is given, is shown to provide a reliable and simple scheme to discuss the
diffusive motion of particles in disordered systems such as electrons in the localized energy region of
disordered semiconductors or ions in amorphous solids. Explicit calculations for some pertinent models
are presented and the consequences of anomalous diffusion to a.c. conductivity, transient photoconduc.

tivity, neutron scattering and NMR data are discussed.

1. Introduction Coulomb interactions [11]. These possibilities will not be
In many disordered systems as metallic and nonmetallic addressed in the present paper.

glasses or disordered polymer materials the diffusive motion For describing ionic or electronic hopping transport or

of ions or electrons cannot be described by Fick's law which jump diffusion in disordered solids [12] one can start from
states that a current instantaneously arises if a concentration a set of master Eqs. [13,14], one can use a random walk
gradient is present. This is because the disorder leads to description [6,15] or an random network model [16,17].
retardation effects which can extend into the millisecond All three approaches are equivalent: the microscopic master
time scale. The most striking and simple evidence for such and random walk equations are equivalent to Kirchofis
an anomalous diffusive motion comes from conductivity equations for the network. The existing approaches for per-
measurements. In many disordered materials the a.c. con- forming the configuration average and solving for the dy-
ductivity is strongly frequency dependent and typically namic diffusivity and conductivity can be divided into three
obeys an a(cw) c- w law over many decades of frequency groups: (a) averaging over the kinetic coefficients, which cor-
with 0 < a < 1 [1,2]. This corresponds to a time depend- responds to an equivalent circuit of parallel impedances
ence of the mean square distance walked by a particle Kr2(t)> [18,19,20- 22]; (b) averaging over the unrenormalized sin-
,fx t", i.e. it increases sublinearly with time instead of linearly. gle site propagator (single site approximation, SSA) corre-

Further evidence for anomalous diffusion of ions in dis- sponding to a serial equivalent circuit [15,16] and (c) effec-
ordered solids comes from dielectric loss [1-3], NMR tive medium approaches (EMA) [14,23-30]. It is well
[2,4,5], neutron scattering [5], and time dependent elec- known that both (a) and (b) can lead to grossly wrong re-
tronic density of states data [6]. Further evidence for anom- suits, especially in the dc limit. In two and three (or higher)
alous diffusion of electrons is obtained from transient pho- dimensional s)stems "ith strongl) fluctuating kinetic coef-
toconductivity data ("dispersive transport") [7]. This anom- ficients one encounters an intrinsic percolation problem
alous behaviour arises from strong fluctuations of the [17,33,34]. This behaviour is accounted for by the EMA
microscopic kinetic coefficient %Nhnh govern the transport description although onl) in a mean field %%a) but not by
process. approximations (a) and (b).

Anomalous diffusion can also arise as a concequence of In the present contribution an effectike medium theor) of
fractal topology [8,9], Lan be aused b. critkal fluctuations hopping transport in disordered systemb is revieed with
near a glass transition [10], or can be a consequence of emphasis on the EMXA description of anomalous diffusion.
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The pres'ent EMA-version is suitable for noncrystalline ma- self density-density correlation function [36] which de-
terials i.e. systems without -translational symmetry. In the scribesthe single partidle motion. The corresponding spec-
next section the hopping modelqis', formulated, and, a new trum is theincoherent neutron scattering law
deriyationof, the EMA is presented. Thethird section com-
prises results of model calculations for several systems of S
interest and the fourth section gives-a description of exper- -(
imental manifestationsof anomalous diffusion.

G (r, t) is the conditional probability to find the particle at
2,Effective Medium Approximation r and t if it started initially at the origin. Particle number
2.1 Rate Equation conservation leads to the Green Kubo identity [36]

Let us consider the -motion of noninteracting particles lim G(k,p) = [p + D(p)A ] -J. (4)
which can perform instantaneous jumps between sites dis- k-0
tributed randomly in space. Such a process can be described
by the4following set of Markovian master equations D(p) is the dynamic diffusivity which is the Laplace trans-

form of the velocity autocorrelation function q (t). D (p = 0)
d , ( = D is the usual diffusivity. As stated in the beginning in

d disordered systems D(p) is strongly frequency dependent up
to the experimental time range so that one has to generalize

ni(t) is the occupation probability of site i and Wys are the the diffusion equation in the following way:
transition rates between site i and j (kinetic coefficients). In
the present contribution only the case of symmetric rates d £ (
Wy = Wj, is considered ') Specifically the quantities Wy are 0T O(r ) t Sd q(t-T) V 2a(r,).

assumed to depend on the intersite separation I0 only: W =
W(rq, Eq1). ry and Ey are random variables with distribution Here a (r, t) is the particle concentration.
g(rij) (radial-pair distribution of sites) and a(Ey). In cases where Re{D(p)} = D(w) behaves as col -  we

The nontrivial problem consists in obtaining a reliable have 0(t) cc t - (2- . The dynamic conductivity is related to
scheme for evaluating the configurational average in order the dynamic diffusivity by the generalized Nernst-Einstein
to obtain quantities like the single particle propagator or relation
the frequency dependent diffusivity. The EMA is such a
scheme. Since the derivation of the EMA versions which ne2

include disorder in the hopping distances [23,24,26] is a(p) = D () (6)
somewhat involved a new derivation is presented in the re-
maining part of this section which follows the spirit of the Re{a(p)} = a(to) is the ac conductivity.
standard CPA/EMA technique [28-31,35].

2.2 Averaged Propagator and Frequency Dependent 2.3 Mean Square Displacement and Anomalous Diffusion
Diffusivity The mean square distance walked by the particle (mean

The linear set of Eq. (1) can be solved formally by Laplace square displacement)

transformation (conventionf(p) = dtf(t) exp {-pt}, p = (r2(t)> (Ir(t)-r(0)12 > (7)
0

i) + , e 5 0). The averaged propagator which is the central is connected via its Laplace transform (r2(p)> to D(p) by
quantity in the subsequent analysis is given by [36]

G(k,p) = ( exp{ikry} [p I-Ik]iiI>. (2) D(p)
U2 0(k) p2  

(8)

Here <> denotes a configurational average, and kis a matrix
with diagonal elements K,, = E W., and off diagonal ele- In the case of normal diffusion one has

I
ments K1 = W. F is the unit matrix. The averaged propa-
gator G(kp) is the Fourier and Laplace transform of the (r2 (t)= 6Dr.

Anomalous diffusion is present if (r2(t)> increases subli-
SIn systems with energetical disorder the detailed balance leads to nearl with time. If, for example, D (w) x. w' 1 we ha~e

W, 6 W, and one must use a more general treatment [26]. How- from (8) and the Tauberian theorems -r2 tt)> cc t'. If the
ever, as shown in Ref. 26 in cases where one is only interested in
diffusion and not in thermoelectric effects or energy relaxation it diffusion process is strictly anomalous the sublinear increase
Is sufficient to use symmetri rates with effcitve energy barriers of (r2 (t) extends for ever. In man) systems of experimental
leading from i to j. relevance, however, there can be a crossover from anoma-
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lous to-normal, diffusion at a certain time- to. This corre- here In (p) = In (k = 0,, p). Im (p) is, the relaxation kernel
sponds to a change in, D (o) from being frequency inde- which controls-the density relaxation between the two regions.
'pendent for,co:< co0 = t6-1 to being frequency dependent We now create a "perturbation" 'by considering a real pair
for (o > o. of sites i and j which are supposed to be situated on opposite

sidesof the plane. Around this pair the real rateequation
2.4 Generalized Master Equation is supposed to be valid inside a volume 10, = in, =

As a consequence of (4) G (k,p) can be represented in terms 12/2N, on each side of the plane. Ns is the total number of

of a density relaxation kernel (memory function) in the fol- sites and n, is the site density. The perturbing "Hamiltonian

lowing way [37]: matrix" is given by

G(k,p) = [p-m(k,p) + m (,p)]-1 (9) I m(P) WWJ - m (p)

where In (k, p) has the following Taylor expansion (5 = - p l (5)
W mn(p) In(p) W

m(k,p) = m(6,p)-D(p)k2  (10) 2N, 2 N, I

so that The CPA/EMA prescription for calculating m(p) now con-
sists in postulating that on the average the T-matrix that

D(p) = - -A m(k,p) (11) corresponds to P should vanish [28-31]. This leads to the
2\-k,); following self consistent equation

If one introduces the inverse Fourier and Laplace transform [m(p)/2N] - W = 0 (16)
of m (k,p), the memory function In (r, t) one has from (7) the 1 -2 (G1- G2) ([i(p)12N] - W} /
generalized master equation for G (r, t) Eq. (16) is very similar to the conventional EMA/CPA

d +00 Eq. [28-31], The difference lies in the effective medium.
G(r,t) =J dTL-J d3 r1m (r-r1, t-r) G(r;r) The latter is in the conventional theories a regular lattice of

dt 0 L-c (12) sites with effective frequency dependent hopping rates. Here
+0 3

1  we did not make any assumption about the structure of the
-), effective medium (except for homogeneity and isotropy).

By using (14) one can cast (16) intothe form
(12) is so to speak a continuum version of (1): the discrete
sites are replaced by the continous space variable and the ( 2 W , 2 (17)
fluctuating hopping rates by the memory function,.ep W ~ ~ /.(7

The task is now to calculate Im (Ep) from the microscopic 1+2 - _ (1 -pG,)
quantities W.. It is helpful for formulating the EMA to make In(p) N,

the following ansatz for the memory function
For performing the configurational average we assume that

p =the energy barriers Ey and the distances ry are distributed
t pindependently so that we have for the distribution of the

Here g(r) is the radial distribution function and y(rp) has
the meaning of a frequency dependent hopping rate that P(W)dIW0 = (r) (E)d rodE, (18)
corresponds to a hopping distance r. d

2.5 Effective Medium If we now insert the explicit solution of(14) for the case that

We consider now a fictive plane which divides the dis- the particle was initially in B,
ordered system of total volume 92 into two adjacent regions
B, and B2 of the volume 10. If the starting point of the 1 1 ( 1(pi (19)
motion lies directly on the plane one obtains from (12) the = p
following set of equations of motions for the propagators
G, and G2 which are integrated over the regions B, and B2, we obtain in the limit N,, 0 -* oo (keeping n, = N,12 finite)
respectively:

pG1(p) - GI(t = 0) = In(p) [G2(p) - G1(p)] n(p) = 11 f drip-g(r-j) d 2E We(E) 1
2((14) -00 0=p) )

pG 2(P) - G2(t = 0) = Inz(p) [G1(p) - GA(P)] p +in 2 Wi
2 (20)
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Since we-want (20) to-hoid for any distribution g(rj) (20) +C0 (
together with (13) implies N + eflE "2rja

0 m (p)'+ p Vo

y(r,p) = n, S dEije(Ej) 1 (21) If N(E) does not change appreciably, in the range kT0 +

p+n1(p) 2 W(ri1, around the Fermi level EF one can take N(E) ,t N(EF)
NF outside the integral and obtains by a partial integration

so that [25]

+O 0=4T I,epir) o() Jdx x1 e (27)

m(k,p) = n, I d3rjgj(r) dE, (Ej) I TO 0 1-0__ 10 +d+(p) + p vo
p+m(p) 2W with

(22) TO = 24 (28)

From (11) and (22) the diffusivity is obtained as
The dynamic diffusivity is then given by

D(p)=' S d rr2 g(r) dEe(E) a2  Td 0

111(p) + 2 W(r, 
(29)

(23) Ine(p) + p + '

In Fig. I the real parts of ie(p) and D(p) as calculated from
In the original derivation of the self consistent EMA Eqs. (27) to (29) are plotted against w for different values of
Eq. [26]it had been noticed that one encounters a double T0/T. It can be seen that a large frequency range of anom-
counting problem which is- typical for self consistent mean alous diffusion appears which becomes the more extended
field theories It was shown that one can compensate this the larger T0/T is,

-error by multiplying the density that appears in the self
consistent equation by a factor ap = lim (N,!/N.,)IIN , = 10.2
exp{- 1}. N. "C " 10,

In the dc limit this produces nearly the same results as :3
that provided by a percolation analysis ['17,33,34]. Butcher 0
and Summerfield [38] have suggested w, use instead the o 10-6

inverse percolation number [17].incorporating this correc- -

tion the EMA equation now takes the form C

+ o 1 2 10"10 "/111(p) ap, -d 3ro(r) JdE Q(E) '

p+m(p) + 2 W(r,E) .2

10-16 10-1 100
this version of the EMA cotnpares well to numerical sim- tog W
ulations of hopping models [25,39]. Fig. I

m(o)/o (-) and D()m(co)/vOD(o (- - -) for the variable-
range hopping model as calculated from Eqs. (27) and (29), resp.

3. Examples for T/To = 106, 10
- , and 10

- 4

3.1 Variable-Range Hopping In the d.c. limit o--0 we have from (29)
For phonon-assisted tunneling of electrons in the localized
energy region of disordered semiconductors (variable-range 4 T d _ X3  I0
hopping [12]) we use the symmetrized expression [26] j dx 1 + -e-  (30)

0 +e

2JV(r,E) = Yoe-2"' e- '  (25) with = -ln(mn(0)D/ ). For > I the Fermi function in
the integrand of(30) can be replaced by a step function with

where a is the radius of the localized wave function and 11 = the result
1/kBT. Introducing the effective density of states N(E) =
nse(E) and setting g(r- 1 we obtain the following EMA = . . (31)
equation T
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From this-followsMott's,[12] T114 law: against frequency the behaviour is quite similar to that of
the vaiiable-range model.

0)- a2  T 1,
2  An important qualitative difference lies in the de behav-

(0) -aP -T m() (32) iour of m(p). Setting co = 0 and defining again 4 =
m(0),=,v0 exp {-(T/T) 4} -n(m(O)/vo), ,the EMA equation become

00 11 = Zav f dEQ(E) (37)
3.2 Clssical Hopping 0 1+efl = 3"

For classical over-the-barrier hopping of ions in disor-
dered materials we use' the following form of W(r, E): Setting = fip the problem becomes equivalent to that for

finding the chemical potential in a disordered semiconductor
2 W(r, E) = 0(r...-r) 'o e- flE. (33) for a given number of carriers. For temperature T < it the

Fermi function can, again, be replaced by a step function

Tho dynamic diffusivity is given by: and we obtain

it
% I = Z a, SOE e(E) (8D(p) =. Rre(p) (34) = 0(38)

with This yields an Arrhenius law for the d.c. diffusivity inde-
pendent of the details of the barrier distribution Q(E) [40].

4 ,Eqs. (31) and (38) for the d.c. jump rate deserve a further
R2 = 5 dr r4g(r)/ dr r'g(r) (35) comment. Let us consider the classical hopping model (33).

0 0 For finding the conductivity in this model one can use the
following percolation construction [17, 33, 34]; Let us con-

and the EMA equation for m(p) neet, all sites which have a distance less than rm. and a
- 1 )(6 barrier between each other less than E*. If the level E* is

elp)= (36) chosen to be very low there will be only small clusters of
+ -connected sites. The size of these clusters will indrease if E*in(p) + p v0  is increased until at E* = it there exists a percolation path

through the system Eq. (38) is just the equation which math-
where ematically describes this construction [17,33,34]. The same

applies to Eq. (30) in the case of variable range hopping.
Z=n ,i dr4ng(r) Here, the level which is shifted is defined by * =

0 2ar* + #E* until percolation is achieved at " = . In the
limit of low temlirature and/or density where the Fermi

is the coordination number of sites. functions in Eqs. (30) and (37) become step functions, there-
As can be seen from Fig. 2 where the self consistent so- fore, the d.c. version of the EMA becomes equivalent to the

lution of (36) is plotted for a model with Q(E) = const. percolation constructions of Refs. [17,33,34].

_ _ __ 3.3 Percolation
In contrast to the "fictitious" percolation model discussed

at the end of the last paragraph let us study now the fol-
lowing "real" percolation model: We consider a disordered

S10-3 system of sites in which there is a bond between neigh-
bouring sites with probability x (concentration of bonds).

3Two sites are defined to be neighbours if their distance is
. .E less than rm,. Such a model can be described within the

1 -6l0 present formalism'by the rates

2 5(r, E) =J Y(r,,-r)b(E) connected (39)
to disconnected

10.1

10-10 10- 1 100 The EMA Eq. (24) for this case becomes particularly simple
tog W

Fig. 2 /?1 (40)
nz(o)/vo for the classical barrier hopping model Eq. (30) for a con- rn(p) = Zapx 1 (40
stant barrier distribution L(E) = PIZapkBT with P = 0.15, 0.1, +
0.08, and 0.05 4z{p)-4.p Wo
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This-is a.quadratic equation ) for ne(p) with the solution 3.4 Crossover, from.Normal to Anomalous Diffusion

1 r112 An important advantage of the EMA description of
m(P) = - (a W -7p) ± (8 W -p) + (a + 1) Wpl (41) anomalous diffusion in disordered systems as compared, for

2 [4 1 example, with the phenomenological CRTW model [7] or
the single-site approximation [15,16,20-22] is-that a-pos-

sible crossover from anomalous to normal diffusion is ac-
where = Zapx- - is the difference from the counted for correctly, i.e. that in calculating the d.c. diffu-x0

percolation threshold xo = 1/Za. One has to choose that sivity the percolativeaspects are treated properly. It is not
solution which renders Re {m(p)} > 0. For co = 0 we obtain difficult to be convinced from the EMA Eq. (24) and Figs. I

to 3 that the frequency a4 in the neighbourhood of which
>0 the transition-from normal to anomalous diffusion occurs,

(0) W8 > 0 (42) is just given by the d.c. value of the generalized jump fre-
quency:

For demonstrating the similarities but also the dissimilari-
ties between the models of the preceding paragraphs and o = (P = 0) (43)
the percolation model e(p) as given by Eq. (41) is plotted The value of this parameter decides whether or notone has
in Fig. 3. The common feature is that if the control param- anomalous diffusion in a time region of interest: anomalous
eter x takes valuts which, approach, xe from above there diffusion occurs for t < to
exists an increasing frequency range of anomalous diffusion.
However, while in the other models nm(0) is always finite'
(albeit exponentially small for low temperatures and/or den- 4. Description of Different Experimental Manifestations of
sities) in the percolation model m(0) becomes 0 for a finite Anomalous Diffusion
value of x. (For x < Xe the particles become localized inside 4.1 a.c. Conductivity and Related Data
the percolation clusters rendering the system non-ergodic As emphasized in the beginning the most direct evidence
[41,42]). for anomalous diffusion in disordered systems comes from

a.c. conductivity data. As an example we reproduce the com-
100 bined a(co) data extracted from several different types of

measurement [3] in Fig. 4 and compare it with the EMA
result (36) for classical hopping with constant Q(E). The
anomalous frequency dependence predicted by the EMA
(only the activation energy of a(0) was adjusted to the meas-

S10- ured value p = 70 kJ/mol) follows the experimental one
.1072 remarkably well.

0n

log (W/Vo)
-14 -12 -10 8 -6 -4 -2 -0

10 " 4 0- o-2

0- - ________

10102 -2 10-
tog W -.

Fig 3 -4- -60p
m(c)/JWo for the percolation model Eq. (41) with : = 10- 1, 10- 2, .
10 - , and 10-  -8

0 1631C

Also the frequency dependence of m(p) is quite different g-8 -102
from that of the previous models. While the frequency ex-
ponent is 1/2 (mean field exponent) in the percolation model - 0 C0
the frequency dependence of re(p) in the other models only - -
resembles an w - behaviour in a certain frequency window, -12

but, as can be seen clearly from Figs. I and 2, the d - law 0 2 4 6 8 10 12 14 16
is not obeyed exacily. log ll(Hz)l

Fig. 4
a.c. conductivity data of Na20.3 SiO2 glass as compiled by Wong
and Angell [3] (- , nA, S, 0, 0) compared with the EMA

2 This equation is very similar to the mode .oupling equatiun fur .akulation fo Ja s ,dl hupping Eq. k30) with v.bnlant L'E/, ad-
the Lorentz model [41]. The .ritical exponents near the perno- justed to the a.ti athon energ) of the d.,.. ,ndu .t .i), p 70 k,
lation threshold are the same. mol (- - -) from Ref. [40]
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4.2 Anomalous Transient'Photocurrents inDisordered. 21D(p) [ p (49)
Semiconductors J(P) = pL 12 exp (49)

In transient photoconduction ("time-of-flight") measure-
ments carriers are created by a light flash on one side of a j(t) has to be calculated from (47) (or in the case t > tR from
semiconducting sample which subsequently are drawn to- (49)) for a given form of D(p) or p(p) by numerical Laplace
wards an electrode by a bias field. In ordered systems one inversion.
expects a constant current which suddenly drops if the car- The advantage of using the D (p) formalism is that one
riers hit the electrode. If L is the sample thickness the mo- can easily incorporate dispersive-non-dispersive crossover
bility p = (e/kj) D can be calculated from the drift velocity effects [49] by using a model in which to falls into the ex-

perimental time window. For observing a "plateau" in the
v = pF = L/tr (44) transient current pulse one has the condition [27,52,53]

tR < to < tT.

where F is the field and tT is the transit time. In disordered
materials, however, oneobserves a continously descreasing 4.3 Neutrou Scattering

current [6,7] which can be described by The incoherent neutron scattering law corresponding to
the particle's motion in the disordered environment is given

t - 0 - 1) t < tT by Eq. (3). In particular for the classical hopping model (33)
j(t) oc (45) it is given by

it ) t > tT

S(kco) = -Re {(p +f(k)in(p))'J (50)
with 0 < a < 1. Scher afid Montroll [7] described such a

behaviour ("disrtrsive transport") phenomenologically in
terms of a coninous-time random walk (CTRW) on a lattice
with a waiting time distribution W(T) Oc - In such a
model one has <r(t)> oc t . Obviously the anomalous tran- f(k) = (4nn,/Z) S drrg(r)[1-sin(kr)/kr], (51)
sients are due to anomalous diffusion, For a microscopic 0
description one can use random trapping [27,43-49] or
hopping models [7,15,27]. As shown in Ref. [27] both can for k-0 we have, of course (cf. Eq. (4))
be incorporated into a hydrodynamic description
[27, 50,51] with frequency dependent mobility and diffusiv- f(k) k2R' (52)
ity p(p) = (e/kj7)D(p), where the latter behaves as D(w) oc 6
to - . The corresponding propagator is given by

Neutron quasielastie scattering is an ideal tool to probe
G (k,p) = (p - ik, p(p)F+ D(p) k2)-' (46) anomalous diffusion in a case where this cannot be done via

Inserting this into a planar geometry with reflecting bound-
ary at the front and absorbing ones at the back electrode
one obtains [52] for the Laplace transform j(p) ofj(t)

I 100 0 00
J(P) = (- +

LI - (yyij) 10

0
0 0

(47) 
2where qj = eFl2kBT and 10- 1

y = [,12 +p/D(p)]Rs. (48) iO -l0ll l0ll

w[sec 1J
It has been shown in Ref. [27] that for times larger than Fig. 5

=: pj' (where PR is the solution Of PR =D(P)12) the Quasielastic incoherent neutron scattering data from H in amor-
phous Niz4Zr76, compared %%ith the EMA prediction (Eqs. (36) and

diffusion term in Eq. (46) can be neglected and Eq (47) re- k50)) fvi th; Jatbwal hopping niodcl aith t Gauwan ,,(E) [56]
duces to the expression given by Leal Ferrera [50]. from Ref. (5b)
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an ac, conductivify- measurement, namely in the case of hy- 1o0.
drogen diffusion in amorphous metals. If m(p) has a disor- SIT: 0,S1

der-induced frequency dependence the spectrum should be 2.35

non-Lorentzian. This is, in fact, observed [5,54,55]. In par- 0 4, i
ticular if rn(p) oc ol- one expects S(kw) oc dt1-). In Fig. lo 10

5 quasielastic incoherent neutron scattering-data [5] from v.
H in amorphous Niz4Zr76 are shown. It can be seen that the
data exhibit such a behaviour.

Theycan-be well fitted by a classical hopping model with
a Gaussian.L)(E) as calculated by Richards [56] with the 0
maximum adjusted to be compatible with the experimentally 0
measured [57] activation energy of the diffusion coefficient , 2.5 ,
D(0) [58]. 1 ,"

Fig. 6
4.4 Nuclear Spin-Lattice Relaxation BPP plot of the spin-lattice relaxation rate of 'LiO. B2 3O glass [67]

A useful method for obtaining information on diffusive compaied with the approximate formula (54) where in(pL, T) has
motion, in disordered solids is the observation of nuclear been calculated from Eq. (30) with a constant a(E) adjusted to the

measured activation energy of the d.c. conductivity (from Ref. [4])spin-lattice relaxation as deduced from NMR [59,60] or

nuclear radiation anisotropy which followr. a nuclear I0 de-
cay (P-NMR) [61]. Conclusion

In crystalline solids the temperature dependence of the The effective medium approximation comprises a simple
nuclear spin-lattice relaxation rate can be well described by and reliable tool to describe jump diffusion in disordered
the BPP formula [62,63] systems. Anomalous diffusion which is ubiquitous in dis-

ordered materials is explained as the result of strong fluc-
Ti-'cc Re {(PL + W(T)' - } (53) tuations of the microscopic transition rates which govern

the random walk of the particles. For models which can be
where W(T) oc exp{-p/kBT} is the jump rate that corre- characterized by randomly fluctuating distances ry and en-
sponds.to the (frequency independent) diffusivity D; PL = ergy barriers Ey simple formulae are given for calculating
o. + a where WL, is Larmor frequency. In an Arrhenius the d.c. and frequency dependent diffusivity D(co) and con-

plot In Ti- I against 1/T one expects from (53) a symmetric ductivity o(co). The only input information is the functional
maximum with equal slopes of the wings being equal to the form of the transition rates W(r,E) and the distribution
activation energy u of the diffusivity. On the left side of the functions g(r) and Q(E). The results of such calculations
maximum Ti- I is independent of OL (motional narrowing), compare well to numerical simulations of the same model.
on the right it is proportional to CL2. In amorphous ma- The frequency dependence of D(w) and a(o) is given by a
terials there are strong deviations from BPP behaviour generalized frequency dependent jump frequency ni(p) for
[2,59-61, 64-66]. This is not surprising since (53) is based which the EMA equation is solved. In cases where m(0) #
on regular diffusion with a single activation energy, If one 0 a transition from normal to anomalous diffusion occurs
averages now expression (53) - as frequently done in the at a frequency wo = t - t = ni(0). In models with a broad
literature [1,3, 59-61] - over a distribution of activation distribution of energy barriers this frequency can be expo-
energies one makes the same mistake as in the approxi- nentially small at low temperatures giving rise to a region
mation schemes labelled a and b in the introduction. A gen- of anomalous diffusion which extends over many orders of
eralization of(53) which is consistent with the EMA analysis magnitude. In this range D(o) resembles a 0' behaviour
is [4,11] with 0 < a < 1 but this law is not obeyed exactly. A large

class of experimental observations caused by anomalous
T cioc Re ([PL + NO-)' (PL, 7)]-1). (54) particle diffusion can be described by the present formalism

ranging from ac conductivity and dispersive transient pho-
tocurrents to anomalous quasielastic neutron scattering and

Here, k0 is a wavenumber characterizing the spatial fluctu- NMR data.
ations of electric field gradients or the distance dependence
of the magnetic coupling [4]. In Fig. 6 13-NMR relaxation I am grateful to M. Wagener for many helpful discussions and
data [67] are compared with the temperature dependence for producing Figs. 1-3.
predicted by (54) where i(p, T) has been calculated from (36) References
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Proton Quantum Tunneling in Hydrated Protein Surface
G. Careri and G. Consolini
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We measure the protonic conductivity in water clusters adsorbed on lysoz)me pounders, belowN room
temperature. In the low temperature region the conductivity increases with temperature as expT 6, in
agreement with prediction by the theory of dissipative quantum tunneling. We detect the onset of this
effect near 180 K, where a glass transition in the protein matrix is known to take pla;e. Quantum tunneling

matches smoothly with thermal hopping near 271 K.
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Previous, Work from this laboratory has shown that hy- 56 4
drated lysozyme powders exhibit dielectric behavior due to V.
proton conductivity [1],and-that this behavior can be de- 0

scribed in the frame of percolation theory [2, 3]. Long range
proton displacement appears only above the critical hydra-
tion for peicolation h, (g water/g- dry weight), when the 2- .. .Jdimensional motion takes place on fluctuating clusters of
hydrogen-bonded water molecules adsorbed on the protein 4.0
surface.A similar 2-dimensional protonic percolation 'has
been detected in powdered smaples of purple membrane of
Halobacteriums Halobium [4]. In both cases the emergence Ly&. h,.22H20

of biological function, respectively enzyme catalysis and
photoresponse, has been found to coincide-.with the critial
hydration for percolation h. More recently the above room V71

temperature studies have been extended towards other vi- 3.
able systems [5]. Here-we report results on the low tem-
perature protonic conductivity of hydrated lysozyme pow-
ders, to investigate the possible occurence of proton quan- -

tum tunneling in hydrogen bonded water molecules 10 5 4D .

adsorbed on protein. 103 T' /K 1

The dieiectric teenique has been already described [1] as Fig. 1
Well as the procedure to evaluate the d.c. conductivity u of Natural logaritm of part of conductivity dat'a plotted vs reciprocal
the sample [4,5]. In this work the insulated electrode-ca- absolute temperature lIT inthe high temperature legion. In the

upper inset the activation energy !1, defined as the limiting slope
pacitor is reduced to a two layer composite capacitor, one reached by the data, is plotted vs hydration level for H20-hydratcd
layerbeing the 1.8 mm teflon sheets and the other one the samples
4.5 mm lysozyme powder at constant water content h. This
capacitor was cooled to 170 K by cryogenic apparatus at a
rate of'3 K min - . Dielectric'data from 10 KHz to 1 MHz and Tg2 can be associated with protein glass transitions, as
have been recorded while raising the temperature at a rate -it will be discussed elsewhere.
of about I K min - '. A typical run lasted about 6 hours and As shown in Fig. 1, in the high temperature region the Ar-
included about 300 conductivity vs temperature data. Na- rhenius law is accurately followed, with an activation energy
tive lysozyme, prepared by Professor John A. Rupley (Uni- H slightly increasing with hydration level. Our values of H
versity of Arizona, Tucson) was at pH 7 [3]. The same are close to 29.4 KJ/mol, the activation energy detected by
preparation, of about 0.3 g, was used in all runs, and it was NMR for water reorientation correlation time [7], suggest-
hydrated by the isopiestic method with either H20 or D20. ing that the mobility of the adsorbed water molecules must
Several H20 and D20-hydrated samples have been studied, be the major controlling factor for proton transport, if the
and the pertinent parameters of each sample are shown in proton number density is assumed to be temperature in-
Table 1. At the lowest temperatures here investigated the dependent. This last assumption is frequently made to de-
conductivity is found temperature independend, and it is of scribe the electric conductivity of biopolymers [8] and of
uncertain origin [6]. This limiting low value of co varies ice [9], where extrinsic charge carriers are believed to be
around ao = (6.3 ± 0.6) x 10- mho m- because of lack produced with an energy lower than the dissociation energy
of reproducibility of capacitor geometry in different runs. of a water molecule. Thus at temperatures above about
Above TgI the conductivity increases with increasing tem- 260 K the rate process is controlled by a thermally activated
peratures, and at Tg2 it displays a slight break. Both Tgl hopping of charged defects over an energy barrier which is

Table I
Parameters of investigated samples, defined and discussed in text

Sample hydr.ao So tga tgf#Sa pl yd . (/) (10- 9 mho-m - 1)  (Kcal/mol) (10- 15 K 6 )

I H20 0.07 5.5 ± 0.2 -...

2 H2O 0.13 6.0 ± 0.2 +0.55 3.89 ± 0.06 16.34 ± 0.25 1.73 ± 0.02
3 H20 0.17 6.0 ± 0.2 -0.03 4.95 ± 0.08 20.79 ± 0.34 2.76 ± 0.01
4 H20 0.21 7.3 ± 0.3 -0.40 6'16 ± 0.06 25.87 ± 0.25 3.90 ± 0.10
5 H20 0.22 6.3 ± 0.3 -0.28 5.61 ± 0.01 25.56 ± 0.04 4.32 ± 0.01
6 H10 0.31 6.1 ± 0.2 +1A8 6.67 ± 0.06 28.01 ± 0.25 7.00 ± 0.02
7 D2O 0.22-- 6.9 ± 0.3 - 5.89 ± 0.06 24.74 ± 0.25 3.75 ± 0.04
8 D10 0.06 6.0 ± 0.2 ....
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a 4

4 t~

10I 0 0.

-h/g(H20)g-'(dry)f

-' Tg2

T91 Tgl Tg2

2k2 Lys. h.22F20 6
01: X do 0

41 t 2. 1 b l

10-13 T6/K6 10"3 T6/K 6

Fig. 2 Fig. 3
Natural logaritm of part of conductivity data plotted vs the sixth The same as Fig. 2 including H20-hydrated samples at hydration
power of the absolute temperature T' in the low temperature range. level 1h = 0.31 (pentagons), 0.22 (circles), 0.17 (squares), 0.13 (trian-
In the upper inset the slope tga and tgfi of the straight lines (see gles). Solid lines are best fit through data, Conductivity data shown
Fig. 3) focussing respectively on (Tg1,vo) and (Tg2,a2) are reported in (a) have been corrected by an arbitrary Aao reported in Table I
vs hydration level h, Solid line is best fit through data included and discussed in text. Sample at h = 31 has not been included in
between vertical bars (a) because affected by large hysteresis at Tgl. From these plots we

have evaluated Tgl = 182 ± 2 K and a, = 6.6 ± I x 10-9 mho
temperature independent, in agreement with current models m-, and Tg2 = 203 - 5 K and a2 = 8.8 ± 4 x 10-9 mho m-1
[10] for proton transfer in H20 networks.

In the following we shall consider the temperature region 1/TI [ K-]
where tunneling may prevail. A general theory of quantum .003 .004
tunnel out of a metastable state interacting with an envi-I
ronment at temperature T has been produced by Grabert, 300 K
Weiss and l-inggi (GWH) [11], with the finding that for
damping of arbitrary strenght, the tunneling decay rate al- 4.5-
ways matches smoothly with the Arrhenius factor at a cross-
over temperature and that heat enhances the tunneling
probability at T= 0 K by a factor exp [A(T)]. For un-
damped system A (T) is exponentially small, whereas for a 280 K
dissipative system A (T) grows algebrically with tempera-
ture. Of particular interest here is the case of tunneling cen-
ters in solids, where A (T) increases proportional to T" at 3.5 270 K
low temperature, with n = 4 or 6. In order to test the GWH
theory, in Fig. 2 we have plotted the log (conductivity) data
versus T6, and we find that a remarkably simple description
can be offered as follows. In this T6 plot, the conductivity
data lna(h,T) can be fitted by straight lines originated near
Tgl and , - ao, and after a break can be fitted by straight 273
lines originating at Tg2 and a 2 > o". Fig. 3a shows the pro- 2.5 1 1
cedure followed to detect the focuss by linear extrapolation 4.5 6.5 8.5
of the data, imposing a small but arbitrary displacements T4/[K4
Aao to all conductivtity data of each sample, to take into Fig. 4
account the above mentioned difficulty to reproduce the Natural logartim of all conductivity data near the crossover region,

plotted vs reciprocal absolute temperature kupper 3,ale) and v the
capacitor geometry. The focussing on Tg2 is insensitie to fourth power of the absolute temperature lowef bl.alc) Solid lines
this correction because here a > co. As shown in Fig. 4, even are best fit through data included bet%%een orizontal bars
the linear T4 plot is accurately followed up to a crossover
temperature range of about 10 K, where it merges w ith the .-our data %ith different values of n, but Fig, 5 shows that
lower temperature bide of the Arrhenius law shoxn in Fig. only n = 4 gave results comparable with n = 6, as predicted
1, as required by GWH theory [11]. Finally, we have fitted by GWH theory [11].
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lecularprocess. Proton tunneling displayed by hydratedii-
ological systems below room temperature has been reported-
elsewhere f12].

Several discussions with Prof Peter Hiinggi (Augsburg) are grate-
fully aknowledged. This work was supported in part by I.N.F.M.
And by EEC projects SC1000229.
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The quantum analog of Kramers reaction rate for a dissipative environment is derived on the basis of a
periodic orbit approach for multidimensional tunneling. The resulting reaction rate expression holds at
all temperatures, thus covering [in contrast to the imaginary free energy method ("bounce-"method)] the

classical and the quantum regime on the same basis.

Introduction on a unified approach to the dissipative quantum Kramers

Quantum reaction rate theory underwent profound de- rate in a metastable potential J'(.x) in which the reaction
velopments within the last decade. In particular, the recent coordinate x of a reactihe partiLle of mass M is coupled to
progress in the quantum theory in presence of dissipation a continuum of bath degrees of freedom.
[1,2,3,4] enables one to generalize the classical theory of Consentional quantum-TST represents a rather patchwork
Kramers for the rate coefficient in a dissipative environment affair. In doing quantum ca-ulations one replaces klassical
to the quantum regime [3, 5 -- 9]. Our fo.us %ill be on the partition functions b) their quantum counterpart., assuming
semiclassical limit of the quantum-transition-state-theor) separabilit) of the atiuu %ibtations and, os rotations near
(QTST) in presence of an infinite number of bath degrees of the saddle point, and then Loricitb fos multiple '_rubingb
freedom which model the dissipation, i.e. %Ne shall elaborate near the barier top by the multiplhwation )f a temperature-
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dependent Wigner-|iketra~nsission-factor [10,11]. There- where witht& = t - ihfP/2
foie;, this approach.essentially restricts-the quantum treat-
ment to the high temperature limit. It was only until recently C (t) = Tr [,rexp (iH t*/h) Pexp (-i Hth)], (3)
that the case of dissipation (continuum of bath, degrees of
freedom) has been discussed within this approach in a beau- 1

tifu papr b Polak [2].wherein. P ~ [S(x) (pNM) + (NM~ 6x)] is the symme-tiful paperby Pollak 12].2

Within the last decade, the quantum-Kramers rate -has trized flux operator.
originally been studied over the whole temperature regime
by the Augsburg-Essen-Polytechnic-Stuttgart school [5, 7, Semiclassical Quantum-Transition-State-Theory
8, 9,,13, 14] and the Moscow school [6] which all made use
of the imaginary-free-energy methodology [15]. The pri- Following Miller [,16] the quantum - TST approxima-
mary object of this latter method is the dissipative bounce tion to the rate k cnsists in the replacement in (1):
(instanton/anti-instanton) solution. This periodic solu-
tion - in absence of the influence of dissipation - has been 5(x) (p/M) '- -(x)li (4)
introduced in Miller's semiclassical quantum-TST for non- 2
separable systems [16], see also Refs, [17-20]. Following
the original reasoning, of*Miller [16], we. shall re-evaluate and then proceeds by use of the semiclassical approximation
the quantum-Kramers rate results [3, 5-9] by use-of the for the Boltzmann propagator. Thus, one obtains [16]
multidimensional WKB-approach for the quantum-TST
rate in terms of periodic orbit theory [21,22]. In doing so, k-k Tr=Z-'Re{Sdq<qlexp(-fH)lq>8(x)-llI}' (
we cover the whole temperature regime from T = 0 up to 2

room temperature on a unified basis. In a previous item
[23], see also Refs. [8b,9], we have already reported the Here, q -- (qo = x, q1, ..., qN) are the coordinates of all the
results of the continuum limit of this multidimensional degrees of freedom of the system, (x) and bath, (q], ..., qN).
WKB quantum rate approach. in this paper, we present a In going from (1) to (5) we made use of a Weyl ordering for
more extended discussion of the various approximations the operator 8(x) IJI, [16], i.e. we can replace the trace in
used in arriving at the quantum-Kramer's rate expressions, (1) by the phase-space average over the Wigner function. By
and give additional new results. use of the semiclassical expression for the propagator

exp(-filH) the corresponding phase space [16] integration
Quantum Reaction Rate Theory has - in consistency with the use of the semiclassical result

- been evaluated within the stationary phase approxima-
Throughout the following we shall assume that there ex- tion (SPA). This procedure then yields (5). Continuing in

ists a true time-scale separation for the dynamics within the this vein and evaluating the trace in (5) also in SPA yields
locally.stable state at x = x,, i.e. V(xo) = 0, and the dy- a continuum of stationary phase points. This continuum of
namics characterizing the passage through the bottleneck of SPA-points just defines the unstable periodic orbit, or the
the metastable potential, V(x) (e.g. a cubic potential) sepa- bounce solution [16]. In view of the Boltzmann propagator,
rating products from reactants. Then, an initial nonequili- however, this periodic orbit exists for pure negative imagi-
brium population decays exponentially for times longer than nary times only, i.e. the Wick rotated time t --+ r = it, is
the typical time-scale for nonactivated molecular processes real and positive. We now measure distance along this pe-
within the well. Thus, the rate coefficient k becomes truely riodic orbit, qo - x, with all other coordinates being or-
time-independent; it can formally be expressed as the flux thogonal displacements away from it. Therefore, all the in-
integral [24,25] tegrations over the orthogonal displacements can again be

evaluated within SPA. In terms of the Green's function
k = Z I Re1[Tr[exp (-fP-H) 8(x) (plM) 9}]. (1)

Here, Tr denotes the trace, P1 denotes the inverse temperature E + i - H h (E x (E + (6)
and Zo is the partition function of the metastable state at
x0 < 0, x = 0 indicates the transition state, and 9 is the G (E + ic)
operator that projects onto positive momentum states p in
the infinite future (t --+ co). H denotes the total (system plus we have with
bath) Hamiltonian operator. The reaction coordinate x of
the escaping particle ranges from x = -oo to x = + oo. exp(-iHt/h) = -~JdEexp(-iEt/h)G(E), (7a)
With a few manipulations this formally exact rate expression

can be cast as an integral over a flux-flux autocorrelation and f = it/h the formal identiy
C(t), i.e. [26]

• i 0
k exp(-P3H) = li- - j dEexp(-)E)G(E+i0).

k Z' JC(t)d (7b)
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-Inserting (7),into (5) yields the rate coefficient kTsr as a Boltz- Eq. (11) represents a uniform WKB-approximation to k (E),
mannaverage which becomes exact in multidimensional, separable para-

bolic-like potential landscapes. We stress that (11) accounts
ki R for the anharmonic nonlinearities in the reaction coordinate

0s ex; but neglects the influence of anharmonicities for the
(8) "transverse" bath degrees of freedom.

-Sdq8(qo) "5ol(qJG(E+ i0*)Iq>1 . With k(E) given in (11), the quantum-TST rate is obtained

by insertion of (11) into (9a) and then performing the re-

In virtue -of this expression involving the Green's function maining summations and the integration over the range of
one never has to construct a -multidimensional wave func- total energy E of system plus bath. It also should be noticed
tion. Thisfeature represents a great advantage when treating that this procedure yields a closed expression for the mul-
the effects of dissipation. tidimensional quantum TST-rate that holds true for all tern-

The trace in (8) can now be evaluated by use of unstable perature [23]. Further, with the density of states for a har-
,periodic orbit theory [22]. Integrating within SPA over the- monic oscillator, i.e. Q(E) = (2n hIT(E))- l it follows on

orthogonal fluctuations, with q = q, fixed, and then inte- inspection of (9a) that the quantity
gratiig over q0 (which is triviallyaccomplished due to the < k(E)/T(E) (12)
6-function in (8)) yields Miller's central result [16]

denotes a semiclassical expression for the microcanonical rate
ksr = Z;' - dE exp (-PiE) k(E), (9a) coefficient at total conserved energy E.

2irh o

,where the cumulative reaction probability reads Periodic Orbits: A Useful Identity
Before we proceed to evaluate more explicitly the dissi-

(pative -quantum-Kramers rate in the continuum limit we
k(E) I,, (-1)"-I exp -n 0(E)h]( shall reconcile the various approximations leading to (9).

N (9b First the trace operation in (5) naturally leads within the
r 2 sinh i-n T(E) oi(E . semiclassical limit to the consideration of periodic orbits

STwhich give the dominant contributions to (5), In view of the
Boltzmann propagator exp(-iH), such periodic orbits,

Here, O(E) is the abbreviated (Euclidean) action integral' which pass through the transition state location (see (8)), do
along the unstable periodic orbit of period T(E) = - 0'(E) not exist in real time but only in (negative) imaginary time
on the inverted potential landscape (Wick rotation of time t = -ii, i.e. T = it, Thierefore, it is advantageous to con-
t = -iT(E)). The set {cow(E), i = 1, ..., N} are the stability sider the Euclidean version of the propagator. In original
(angular) frequencies of the unstable periodic orbit. If, O (E) time t, such negative imaginary time periods imply for the
is positive (low temperatures) we note that only the n = I SPA-evaluation of (6) a distortion of the integration path
term contributes significantly to (9a). into the lower complex half-plane. In other words, we

Next we use the selfconsistent solution of aiialytically continue the semiclassical propagator

I (qlexp(-iH t/h)lq> to complex timest = -iT. The ana-
Er = E - (i + 1) h ol (Er) (10) lytically continued Green's function then formally reads [28]

as the energy ET which is left in the reaction coordinate <qjG(E)Iq>-(qG (E)Iq> (13)
while the system is crossing the saddle point with the bath
being excited {n,} in corresponding modes. Following the • J dr exp(E[h)( qlexp(-TH/h)Iq>.
reasoning of Miller [27] which he put forward to obtain the 0

improved quantum condition for the eigenvalues of an er- The time integration inherent in (13) must be understood to
godic system, we now construct an improved, and rather be performed in SPA with the integration path deformed so
appealing expression for k(E), i.e. following Hiinggi and as to go through the stationary points in the direction of
Hontscha [23] we use the tunneling energy in (10) and set steepest descent. This procedure is consistent with the use
[9,23] of the semiclassical approximation. Such an approach gen-

erally requires some care near conjugate points [focal sur-

k(E) = 1 + exp'0 (Er)Ih] • (11) faces], see [29]. This SPA integration fixes the period of the
(n, ..... nO periodic orbit p,,a = T(E), such that the corresponding

classical energy of the periodic orbit equals the value E =
In doing so, we have "unexpanded" the corresponding ex- Ep, ,s ,. The final trace over q in (8) is then calculated
pression in (9b) which results if the sinh-fcts are expanded follow ing the recipe of Gutzw iller [22], i e all the transverse
-into geometric series (for more details, bee Refs. 9, 28). displacements along the periodic orbit are again evaluated
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in SPA, while the final integration over q0 would simply one alternatively can evaluate the semiclassical limit follow-
yield the period T(E). By accounting for multiple transver- ing the reasoning of Callan and Coleman [20]. Use of the
sals of the periodic orbit, T(E) --+ n T(E), and keeping track SPA (in function space) for the trace in (15) yields stationary
of the phase changes of the periodic orbit at conjugate points solutions obeying q(0) = q(T). Among those are two con-
yielding the phase (- 1). (- 1)"-', one obtains for the trace stant solutions 4(T') = x0 characterizing the stable state dy-
of the analytically continued Green's function G,(E + iO+) namics (i.e. it yields Z0, see below), and 4(T) = 0, charac-

d 0 terizing the barrier motion. In view of (8) we consider now
h d (only periodic paths passing forth and back the transition

[16,22],the result [28] state. We shall restrict the following discussion to low tem-
peratures; i.e. the rate controlling relevant energies E in the

(-i) expression (9a) all are lying below the barrier energy E =
Jdq~qIG0(E + i0+)Iq> = [i T(E)] Eb. With this in mind, we consider for (15) such T-values for

which the nontrivial periodic solution q(0) = 4(T) is real-
. I (-1)' exp(-n4(E)/h) (14) valued. Setting for a general periodic path

n-i

N I q(T') = (T') + CnX.(T'), (16)

with x, (T') obeying periodic boundary conditions x,(0) =
x,, (T), one considers - for small h - terms in the action up

Note that in (13) the fundamental period T(E) is obtained to quadratic order only. In our case, we consider the Eu-
independent of the number of periods. This is so because clidean Lagrangian for a harmonic bath coupled bilineary
T(E) stems from an integration over qo, and not over time to the nonlinear reaction coordinate x.
T. The multiple traversals must be accounted for because to
obtain the SPA result we must sum over all solutions for L- M. 2  t' 1 + / C1  \2)

the period T(E)- T,(E)yieldingafixed energy E[30,31]. - V(x)+ 2 , +q
Thus, we deal with an infinite sequence of stationary points (17)
along the (negative) - imaginary time axis, t, = - inT(E);
i.e. T, = nT(E). More generally, the result in (13) would be Following the standard procedure, one finds after integrat-
improved further along the line of reasoning of Hiinggi, ing first over the harmonic bath degrees of freedom in terms
Weiss and Riseborough [32] by including not only real of the dissipative bounce trajectory q(t') and the well-known
times r, but also complex-valued time periods Tnk ...= non-local (Euclidean) Lagrangian Lfg [5-9, 13, 14] for the
iT,(E) + ik Tm(E) + ..., yielding a fixed energy E. Here, the trace the result [28]
index e stands for "Euclidean" and m for "Minkowskian", _ . 112 I/[ (1 )-
in reference to the corresponding regions of the non-in- Tr[exp(-,rH/)] iA ) 2sinh _T9,
verted, original potential landscape such as the barrier re- (2

gion (e), or the reactant and/or product region (in). In par- • Idet'8'2SoI, 2exp[-Sq-,T)/h], (18a)
ticular, apart from the normalization factor ZC" i the rate
expression in (9a) is observed to include information about where
the classically forbidden region (transition-state region) T/2
only. Thus, just as with the imaginary free energy bounce S0  M J dit (q(u))1, S, = I Le, q)di = fLoy [j, qhdi.
formalism - -any interference effects to the decay rate stem- -r/2 0 0 (18b)
ming from the classically allowed quantum dynamics in the
non-inverted potential landscape is not accounted for. Such det' indicates that the Goldstone mode contribution of the
effects, for example, include backscattering from reactant eigenvalue zero must be omitted. A is a normalization con-
regions [32], and/or curvature effects of the classically al- stant to be determined below. The r-integration in (15) is
lowed reaction paths. again calculated in SPA. This yields the condition E =

In Gutzwiller's procedure, the trace is calculated keeping 0 S/ar, i.e. this fixes the period rspA - T(E) pA to equal
the fluctuations zero at a fixed point on the periodic orbit, the total energy E, i.e. S, 4O(cj) + T(E)E. With E in the
and integrating over these fixed points at the end (yielding classically forbidden regime we need to consider the prim-
the period T(E)). Likewise, the trace can be evaluated by itive orbit only of period T(E), i.e. G_ - G.'. Insertion of
considering all closed orbits and allowing both for longi- (18) into (15) yields
tudinal and transversal fluctuations around a fixed periodic A(qlG i(E+ iO+)jq>) =

orbit il(T). For the trace of the Wick-rotated Green's func- S d(j

tion
[det'f 2S. 1(-02 S/O1T)r(E)]- "2  (19)

Jdq qGJE)Jq> = f- .- dzexp(TE/h)Tr[exp(-rH/h)] 1' i exp 02 )c-h] .I ~ ~ I d0 [2G(~ )=T o(1) "= sinh -T(E) 92)] x [d(E/]

(15) (2

- . . . . .- .,',--< -.------------------------.
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Hereby weobserve that theSPA yields a phase i- =,exp(i andob = iM - V (q. = 0)112. In other words, prdenotes
it/2), whichwith (-1) iA(i) = A yields a real quantity for the dissipation-modified normal mode barrier frequency
the-analytically continued object (14, 15). The normalization Ob-+/(). With ET > Eb, the effective abbreviated action

-constant, A, stemming from the measure over {c,}, can be Ob(q) is negative. Thus the cumulative reaction probability
obtained if we evaluate Z0, i.e. we use q(0) = ( = T(E)) is not exponentially sensitive, and with kBTIEb << 1, an-
xo. This yields [28] harmonic corrections are negligible. Thus we can use a har-

monic approximation, i.e. the period T(E) assumes a con-
= A2jdet (2 T() 11)[2 sina)stant value T(E) = 2n/It and the stability frequencies can
Z L S .J2 TE)n, (0a) be approximated by the normal modes in the saddle point

I region, i.e. o1 (E)--* Ai'. The abbreviated action thus reads
-I2 (.h. T(E) A (20b) (Er) = (Eb- Er) 21/y < 0. (26)

Here, the set {).?}, I = 0, 1, 2, ... , N, are the normal mode Upon an interchange of the integration in (9a) with the
(angular) frequencies at the metastable state 4 = xo. Upon summations we find
expressing A by use of (20b), one finds with n set equal to
one upon the comparison of (19) with (14) the important kTsT Z 2n fl,[Eb.+.+ 1 )
identity: nN-O

S.112=______ Z)2 / Z expffl[Eb+E ni+ h).?-E]}
Idet82 SJi dE (7dtiS(21) I + exp) k [Eb + i + 1) h).-E]} )

where fl 2it ((I h)- 1. Setting

This relation is of use for the explicit evaluation of deter-

minants. Note also, that in contrast to (14), the SPA in the x =exp/l[Eb+ n,+ 1\
time integration for (19) is performed here at the end, while e
for (14) it defines the first step in the approximation scheme,
thereby fixing the period r = T(E). the integral in (27) becomes with x, = x (E =_ 0)The Quantum Kramers Rate [ 0 dx dx ]

Following Hiinggi and Hontscha [23], we now present P-1 S dx l-
explicit results for the Kramers rate of a particle that inter- 0 LO +Ix X +-

acts with a continuum (N.-+ co) of bath modes, cf. (17). In x- X.-__ _110

terms of the spectral function [sin (nfl/flo)] - ,(fo-f) 8,

t CI CI ( ) (22) (28)
J(co) =

where I < c < 1. With flEb > 1, this correction can be
the Laplace transform the memory-friction kernel y(t) can n

be exressd asneglected to give after corresponding summationsbe expressed as

2 00 J (0)) Z TS p 2sinh(hpl).,O/2) 11t 2sinh(hfl).jO/2)' ....#b)
(z) = - dw 2 2 (23) 2iT 2sin(hfli/2)I, t-i2sinh(hi /2)exp- ,

(29)

First, we shall consider high temperatures Tabove the cross-
over temperature To [5], i.e. with kB the Boltzmann constant By use of the Pollak identities [12], the products in (29) can

be related directly to the dissipation y, i.e.
h

T> To = hik (24) ( 110)0 o
T T kl it krsr(T> T) - ,r-T- exp(-flEb)VCbL co2i (30)

where p denotes the positive root of 0 + n2 v2 4 nVInV)

r2 2 n i c .)2 w r -2 , o-- - V(=x
Y. u= + coI d(5_4 2 (2)where v 2it/hp, (o. = M ' V" (x = xneii);
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At~temperatures T Tthe above approximation diverges This latter form precisely equals the imaginary free energy
at T = T proportiohaltto.(T - T )-. Thus, near T = T result [3, 5-9, 14].
we-must account-for the nonlinearities of the potential land-
scape. Setting more accurately, [23]_ Conclusions

2nr 1 By use of the semiclassical TST of Miller [24] and the

4 (E)= (Eb - ET) + (Eb - Er)2 IT'(Eb)I, (31) periodic orbit theory we managed to obtain from (9a, 9b,
11) all the previously derived results for the quantum-Kra-
mers rate. This approach has for all temperatures the same

and' proceeding as above we arrive at common basis, i.e. the rate expression in (9a). We have thus
demonstrated that the continuum limit of this quantum TST

k (T - sin (hfl/2) precisely equals the dissipative quantum-Kramers theory.
04 (21rh IT' )"' Athigh temperatures T > T, the results approach up to

• o)2 + n22 + no'(nv) quantum corrections (see Ref. [34]), the classical Kramers
H 2ofVfVYf~ rate derived fifty years ago [9, 35], i.e.

,I -CO,+ nv + n (Fnv)

•exp --lEb + h( -p) lErfcL[,±) (p -/) kTST(T >ToN- o) -kKram=rs -= 0 2nexp(-fEb)', (37)

+ O[exp(-poEb)/(loEb)6l], (32) where for zero memory friction [35], y(t) -* 2y 6(t), i.e.
= v

where Erfc(x) = 2n - 112 I dy exp(-y 2) = erfc(-x). With 2 2\ 1-0p= (L +  bo) - ?  (38)
v2 -,oa + v (v) - a(T- T)/T we recover the known result (

of the imaginary free energy method [6, 7, 8, 9, 14, 23, 33].

At low temperatures T <, T, the cumulative reaction The above given results therefore generalize the classical
probability becomes with Oi(Er) > 0 exponentially small teab gen ress therefoe rae the lassial
and we must treat the full nonlinearity of the potential. The treatment of Kramer's dissipative rate to the full (dissipative)
integration in (9a) can then be approximated by keeping quantum regime which extends from T = 0 up to room

only the term with n = 1. temperatures.

This integration can be performed within SPA to yield [8b, This work has been supported by the Deutsche Forsehungsge-
9] meinschaft through Grant No. Ha. 1517/3-1.
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Influence of Non-Linear Dissipation on Quantum Tunneling
Peter S. Riseborough

Department of Physics, Polytechnic University, 333 Jay Street, Brooklyn, New York 11201

Nonequilibrium Phenomena / Nonlinear Phenomena / Quantum Mechanics / Statistical Me-
chanics

The influence of a non-linear dissipation mechanism on the dynamics of a particle, which performs
tunneling through a potential barrier, is investigated, The particular dissipation mechanism considered
contains terms quadratic in the normal modes of the heat bath. in addition to linear couplings. The non-

'linear terms are shown to affect the incoherent tunneling rate.

1. Introduction the temperature is raised, thermal excitations wash out the
Quantum tunneling is an important physical phenome- coherent distortion of the thermal reservoir thereby increas-

non which occurs in an cnvrmous variety of different phys- ing the tunneling rate [2,12). Moreover, the particle may
ical system [1 -11]. It isitherefore not surprising that this (infrequently) absorb sufficiently large numbers of thermal
phenomenon has been-studied extensively [1-14]. Quite excitations of the reservoir's normal modes that thermally
early on in the study of tunneling processes, it has been assisted or activated hopping may occur [2,12].
realized that the coupling to a heat bath plays a crucial role In this manuscript, we consider the effect of including the
in the tunneling dynamics [2], The coupling's action is two lowest order non-linear terms in the coupling of the particle
fold: Firstly, it allows the tunneling particle to absorb and to the heat bath on the tunneling dynamics. In section 2,
emit the elementary excitations of the heat bath, thereby we describe the model system and in section 3 we review
establishing a thermal distribution in the particles energy. the general formulation for the tunneling rate. In section 4,
Secondly, the coupling also has the effect of renormalizing we calculate the tunneling rate, and in section 5 we discuss
the dynamical properties of the tunneling particle, the results.

With only a few notable exceptions [5,6], most of the
studies of tunnehag dynamics have been restricted to con- 2. The Model System
sideration of a particle coupled to a harmonic heat bath, in The system is modeled by a Hamiltonian containing three
which the coupling is restricted to be linear in the normal terms

modes of the heat bath [1-14]. In such systems, the effect

of the linear coupling is to coherently distort the thermal H = Hp + Hr + Hp.r, (1)
reservoir in the vicinity of the particle, thereby causing the
effective potential experienced by the partiLle to be lowered. %,here HP describes the one dimensional motion of the par-
At low temperatures, conservation of energy considerations tide in a potential '(,j), and H, describes the d) namics of
result in tunneling motion being forbidden, unless the dib- the thermal reseroir and Hp., describes the coupling be-
tortion of the thermal reberNoir also moes and accompanies t%, een the particle and the thermal reser' oir The Hamil-
the particle. The dressing of the particle by the coherent tonian governing the particle, Hp, is given
distortion of the thermal reservoir results in the tunneling
rate being suppressed, at low temperatures [2,3,11,12]. As Hp = p/2 M + V(q), (2)
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where p andqare the canonically conjugate momentum and
coordiniate of the particle. The Hamiltonian describing the V(q)
,therm'alreservoir, ,Hycan -be writtenas

Hr [-h 2/2m(d/dx) 2 + mwo2/2x?]. .(3)

This describes a set of Einstein oscillators with frequencies q q
wc. The term thatcouples.the:particle with the thermal res-
ervoir is written as Hp., where

HP. (A, q x, + B, q' x?). (4)

Fig. I
The effective potential Vq5(q) has a metastable minimum located at

This coupling contains the usual bi-linear coupling between q = 0 ,hich defines the zero of energy, the potential at the local
the particles coordinate q and the coordinate of the i-th minimum has curvature of MoU4. The zero damping escape point
Einstein oscillator, as-well as, the bi-quadratic coupling in is denoted by q0
the oscillators coordinates. The latter terms are also quad-
ratic in q,,so that in the absence of asymiimetry in the po-
tential V(q), the total system of particle and'heat bath re- the particle. In particular, we shall consider the case which
mains invariant under spatial inversions. As we-shall de- te particle n aicul r ensh al ith ase whic
scribe later, the above choice of non-linearity in the coupling VO(q) represents an asymmetric potential with a single met-torthe terml rerveoicte f i astable local minimum located at q = 0, of the type shown
to the thermal reservoir is the only type which yields relevant in Fig. 1. The local curvature at the origin will be denoted
modifications to theiexponential part of the tunneling rate. by' Mo, and the point at which the particle escapes from
The interaction terms.vhich couple the particle to the ther-
mal reservoir also modify the potential V(q) experienced by tenthe particle, leading to an effective potential Vfg(q) given by q0.

Vf (q) = V(q)-- 1/2(Aq) 2/(m&,; + 2Bq 2) 3. The Geeera! Formulation
(5) The tunneling rate can be expressed in terms of the Feyn-

+ hw1/2{[t+2B q2[mco?]",-1} man Functional Integral Formulation of quantum mechan-
ics [7]. The Trace over the normal mode coordinates of the
heat bath is performed, leading to an effective action which

The frst correction term to Vff(q) can be considered the contains terms non-local in time, that represents the effect
result of displacing the i-th Einstein oscillator through the of the dissipative coupling to the thermal reservoir [7,8].
distance a, where Unlike the case of linear coupling, the dissipative term is

not merely a quadratic form in q. After analytically contin-
a = AIq/(nio? + 2Biq 2), uing from real to imaginary times the Green's function eval-

'uated in the metastable minimum, transforms into the par-
and the second correction term is the shift in zero point tition futnction for the metastable state. The partition func-
energy of the oscillators due to the change of frequency from tion is evaluated by expanding about the extremal
,oj to a new position dependent frequency oq.j, where trajectories, as in the W. K.B. or semi-classical approxi-

mation [9,10]. The tunneling rate is then expressed in terms
= 2 qof the imaginary part of the free energy [9]. If one further

0 o? + 2 •Bq/n) assumes that only the lowest action trajectories make sig-
nificant contributions to the partition function then, one

Stability of the heat bath, in the presence of a particle at a immediately obtains the lifetime of the metastable state in
fixed position q, requires that B be positive and in addition terms of the single bounce trajectory [9, 10].
the non-linear coupling term is an even function of q, if no We shall first derive the effective action, including the
cutoff on the range of q is to be imposed. It is seen that the leading relevant terms appropriate for the non-linear dissi-
effect of the non-linear coupling term is to reduce the change pation, in addition to the well-btudied linear terms [11 14].
in potential produced by the linear term, %i hereas the change Only, the leading exponential terms in the rate of deca) of
of potential due to the zero point motion is already of order the metastable state %ill be evaluated, as the) dominate the
h and is irrelevant in the calculation of the exponential terms properties of the tunneling rate. The exponential terms can
of the W. K. B. tunneling rate. be expressed as the difference between two smallest extremal

In the next section we shall consider the effect that the values of the action, and therefore .an be evaluated aria-
coupling to the heat bath, has on the tunneling dynamics of tionally [13].
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The coupling to thteet of Einstein.oscillators which corn- for the bounce trajectory [13], and the parameters a and b
prises the .thermal reservoir, yields terms in the action of the are to be evaluated variationally. The physically acceptable
type values are those where both a and b are real and b lies in

r/2 r2 the range -1 < b < 1. The variational procedure follows
-A/(4mwo,) I "dt ' dt'q(t)q(t') along'the lines of Ref. [13]. We find that the leading effect-1/2 -T72

h T. -- T/2 of y is to produce a term in the exponent of
cosh [w1i(T/2.- It -t')/sinhaw1T/2

T/2 -ntCYMqoq(a/qo) 4/(1 - b2)24 F[(l - b2)-t 2], (9a)
+B1h/(2mo,)- dtq2Q()cothwoT/2

-12 where F(x) is a positive definite function given by
T2 772 72

+B1A.1/(4m 2 o7) S dt I dt' I dt"q(t)q(t')q(t') F( + II+n +
-T/2 -T12 -72 F(x) Z E(x - 1)/(x + I)]

cosh [co,(T/2 - It - t'l)cosh[wIe(T/2 - It - tI)]/sinh2o T/2 II.,n --, (9b)
T/2 2j "{(in, l ++ X)}'{n +Ind~~- in, n21/AIn1 I+Ind)).

-B?(h/4m
2co1) $ dt I d'q 2(t)q2(t')

T/2 -r2 For small values of b, the function F[(1 -b 2)-11] tends
•cosh 2E[w(T/2-It-t')]/sinh 2w, T/2 to zero as 11/4b2. Furthermore as b tends to unity,

+ .... (6) F[(1 -b 2)- 1/] diverges to positive infinity as (I -b 2 ) 2 .An
analytic expression for F(x) is given in the Appendix. In the

The first term, can be recognized as the effect of the linear above expression ac = /(2o0) is the usual dimensionless
coupling at finite temperatures [11 - 14], when evaluated as coupling strength characterizing the linear ohmic damping
an integral over the finite range of - T/2 to T/2, where T is mechanism [11 - 14]. The non-linear dissipative term given
related to the inverse temperature via T = hP. It is usual in Eq. (9), can be compared to the usual dissipative contri-
to separate, out the static term, which renormalizes the ef- bution
fective potential and the time dependent dissipative terms.
The static terms are then canceled by appropriate counter + ntcMwoqo (a/qo)2 b2/(1 - b2)2. (10)
terms in V(q), so that the T = 0 value of the effective po- Clearly, for pbysically acceptable values of a and b, the term
tential V~n(q) remains of a specific form [1!1]. The second Cery o hsclyacpal auso n ,tetrterm in Eq. (6), represents the effect of the zero point motion proportional to y shown in Eq. (9) has the effect of reducingoteinstq.(6)repnrosclts te e tof tbleazro olingterm, it the exponential suppression of the tunneling rate due to theoft i o l o b e pbilinear coupling, given by Eq. (10). Simultaneous extre-
merely produces a static renormolization of the effective po- mlizat oo al cion wt E se tandou, elds

tential quadratic in q. This can be recognized as the second malization of the total action, with respect to a and b, yields
a set of coupled algebraic equations which simplify whenterm in the expansion of the second correction term in Eq. written in terms of the natural occurring variables [13],

(5), and in accordance ,with our previous remarks can be
neglected since it is explicitly of order h. The third term in y = (a/qo) " (1 - b2 12, (11 a)
Eq. (6) actually represents the leading relevant correction to
the action due to Bi, the relevant higher order terms are and
generally of the form BA'. The last term displayed repre- x = 0 -bP)-'1. (I1 b)
sents both the dissipative and static term of order B?. This
term is negligible as it is proportional to h. Similarly, the The equations take the form
dissipative and static terms of order B" are all negligible,
since they are explicitly of order I. (2 nkT/h wo)2 1/2(3x 2 -1)

Following Ref. [11], we shall assume the distribution of
the thermal reservoirs normal modes and coupling appro- + c(2ikBT/hwo)2X-ccy 2(2tkaT/hw)4F(x) (12a)
priate for ohmic (linear) dissipation, we shall also assume + I- 3j' = 0,
that B scales with w?, as suggested by the form of Eq. (5).
The dimensionless ratio B q~o/t 2w? will be denoted by y. In and
the following, we shall investigate the effect of the dissipative (2 kT/t )2(x - )
part of the action which is of leading order in y.

4. The Tunneling Rate + 2(2itkBT/hcv)(x 2 - 1)
We shall evaluate the tunneling rate out of the metastable - 4ayy 2(2ikTlhcoo) 4F(x)

minimum of the temperature independent effective potential,
Fig. 1, i.e. + 2x-312y(3x- - 1) = 0.

V(q) = Va(q) = M/2 w q 2 (1 - qiqo). (7) The simultaneous algebraic equations posses a non-trivial
solution for T < To, where TO is the cross-over temperature

The calculation proceeds by utilizing the ansatz that does depend on y. The corresponding action is analo-
q(t) = a/(1 - b cos(2 ntiT)) (8) gous to Eq. (5) with n = I in Ref. [13]. (Nota bene: A factor
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Table 1 5. Conclusions
The value,of the action S in.units of (,Mooqg), for increasing values ofa, The bi-quadratic coupling between the particle and the

thermal reservoir, has been shown to effect an increase in
0 1 2 3 4 5 the tunneling rate, through a reduction of the suppression

produced by the bi-linear particle-thermal reservoir cou-
0.00 0.1799 0.5287 0.9395 1.3687 1.8048 2.2440 piing. In the absence of the bi-linear coupling term, the bi-
0.05 0.1799 0.441 0.732 1.035 1.346 1.661 quadratic term has no effect on the leading exponential
0.10 0.1799 0.368 0.560 0.754 0.950 1.149 terms of the W.K.B. tunneling rate. This is in agreement

with earlier studies [5,6], which show that in such cases the

of n is missing from the denominator of the left hand side.) suppression of the tunneling rate still occurs, but only in the

At zero temperature the simultaneous equations can be re- form ofpre-exponential factors. In fact, dimensional analysis

duced to the fifth order polynomial equation, shows that any perturbative non-linearity in the heat bath
normal coordinates, whether in the description of anhar-

5/2u'+ 2au- 16/9aybu(2-u ' )' - 1 = 0, (13) monic normal modes by themselves or in the coupling to
the particle, are irrelevant as far as the calculation of the

where 6 = 4 In 2 + 7/24. The corresponding action, at zero exponential term of the W.K.B. tunneling rate.
temperature, is given by substituting the solution for u into The authors would like to acknowledge the support of the U.S.
the expression Department of Energy, Office of Basic Energy Science, through

grant DE FG02-84ER-45127. We would also like to thank Profes-
sor Doctors H. Grabert, P. Hanggi and U. Weiss for many stim-

S/(rMwoq 2) = 1/9(2- 2)2 (14) ulating discussions.
' [u +o -4/9by6 (2- u2)2]. Appendix

This process yields the values of the action shown in Table 1. The function F(x) expressed in Eq. (9.b) as a summation can be
For zero strength oithe non-linear damping coupling con- evaluated analytically. The result is given by the expression,
stant y, the action can be expressed as F(x) = 1124(x-4)(7x 3 + 343x 2 + 181.v - 15)

S](nrMooq0) = (4/75)2({10 + a V47/ -10 - 2a2}2 ± 1/2(4x 2 -_,1) ( 2 - 1)In(2./(x + 1))

(15) + 1/2(4x2 - 3) x lx/'-- {In ((x + 1)/2)
+ 21n(l + V/x Z 1)/(x + )))

As shown in Ref. [13], the variational approximation given - 114 (8x 2 + 8x + 1) (x + 1)2 1n (x).
by Eq. (15) differs by less than 6% from the exact numerical As x tends to unity, F(x) tends to zero as 11/2 (x - 1), while as x
value for the action [14]. This expression also shows that tends to infinity F(x) diverges as x4 (41n2 + 7/24).
the action increases monotonically with increasing strength
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Some New Approaches to Semiclassical and Quantum Transition State Theory
William H. Miller
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Berkeley, California 94720

Chemical Kinetics / Quantum Mechanics / Rate Constants / Transition State Theory
Semiclassical and quantum mechanical transition state theory is reviewed and two new approaches
described. One is a general implementation of a semiclassical rate expression [Miller, Faraday Discuss.
Chem. Soc. 62, 40 (1977)] that involves the "good" action-angle variables associated with the saddle point
(i.e., transition state) of a potential energy surface. The other is an evaluation of a formally exact quantum
expression for the rate [Miller, Schwartz, and Tromp, J. Chem. Phys. 79, 4889 (1983)] in terms of Siegert
eigenvalues associated with the transition- state. Siegert eigenvalues are usually associated with scattering
resonances, so their identification with the saddle point of a potential surface, and the expression for the

reaction rate in terms of them, is quite an unexpected and novel development.

I. Introduction to the reaction coordinate (the Fth degree of freedom) which
Transition state theory [1] is without a doubt the most separates reactants from products. If for some states n, P,

commonly used theory for describing chemical reaction were to equal 1, and for all other states equal to zero, then
rates (and also rate processes in many other fields), for both N(E) would simply be the number of states for which the
unimolecular and bimolecular reactions. The purpose of this transmission probability is unity. In general, therefore, one
paper is to suggest two new transition state-like theoretical may think qualitatively of N(E) as the "number of quantum
approaches for determining such rates, the first a semiclas- states that react", as a function of the total energy of the
sical one and the second fully quantum mechanical. In order system. In the limit of classical mechanics N(E) is also pro-
to focus on the basic theoretical ideas which are the subject - portional to the microcanonical average of the one-way flux
of the paper, all expressions below will be written explicitly through the dividing surface [2].
for total angular momentum J = 0; for applications to real The transmission probabilities {P,,(E)} are thus the pri-
molecular systems it is of course necessary to carry out the mary objects which must be calculated, and then Eqs. (1.2)
transition state calculation for each value of J separately and (1.1) give the reaction rates [3]. The simplest approxi-
and then combine them appropriately. The remainder of the mation for them is obtained by assuming that the reaction
Introduction summarizes the basic notions of transition coordinate (mode F) is separable from the (F-I) modes of
state theory and earlier related work. the-activated complex. In this limit

The microcanonical and canonical rate constants are both
conveniently expressed in terms of the cumulative reaction P (E) = P1 (E-e,*), (1.3a)
probability N(E), where c. is the energy eigenvalue for state n of the activated

k(E) = [21rhQ(E)1-'N(E) (I.la) complex, often approximated as harmonic,

F -I(1.1b) v (ilk + 1/2),co (1.3b)
k(T) = [2nIQ'(T)] dEe-PEN(E), (l.1b) A E +

where E is the total energy of the molecular system, T the and Pld(EF) is a one-dimensional tunneling probability,
temperature [Pi= (kT) ], e is the density of reactant states often approximated by the uniform semiclassical expression
per unit energy, and Q, is the reactant partition function.
(k(E) is usually of more interest for unimolecular reactions, P,, (Es) - [1 + e2 OEF] - , (1.3c)
where it is known as RRKM theory, and k(T) typically of
more interest for bimuleular reactions.) The cumulative re- %here O(E,) is the one-dimensional WKB barrier penetrat-
action probability is in turn given by the sum of tunneling, ing integral
or transmission probabilities over all states n = (n a. )

of the "activated complex" 0(EF) dqF i' [J'(qF)- EF]/h2 . (1.3d)
barrier

N(E) = P.(E). (1.2) If the barrier potential V(qF) is furthermore assumed to be

harmonic (i.e., a parabolic barrier), then
The activated complex is the system of F-1 degrees of free-
dom (F is the total number of degrees of freedom of the O(E.) = (V - EF) (1.3e)
molecular system) for motion in the dividing surface normal htIWcI

Ber. Bunsengea. Pi)s. Chem. 95 ,1991, N'. 3 j VCl I erlapjjeoell.hupJ mbll. 1 -0941) II vnlwin. 191 OW5-YU21i 91, J3.069 .5 .3.J0-i.25,0
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- where coF = -ilo)Fl is the imaginary barrier frequency. the latter case one can compute classical trajectories, deter-
(From Eqs. (1.3) one can readily see the general character- mine the invariant tori, calculate the topologically inde-
istic P.(E) -v 1 for EF - E-c,? > V0.) The totally har- pendent action integrals, etc., in order to determine them
moniclimit of the theory thus requires only a normal mode [7], but this is not possible for the case of a saddle point
analysis at the transition state (saddle point of the potential because the trajectories will "run away". It is necessary to
surface) in order to determine the frequencies {cok), express the classical Hamiltonian in terms of the good action
k = 1,...,F, and also, of course, the barrier height V0. As variables by some analytic prescription [8].
simple as this totally harmonic result is, it is the general The general result of this approach [6].begins with the
basis for describing the effects of dissipation on reaction classical Hamiltonian expressed as a function of its "good"
rates (i.e., Kramers' theory) [4]. (i.e., conserved) action variables, E(II ......... IF). One of

A more rigorous expression for the transmission proba- these actions is identified with the reaction coordinate, If
bilities is given by the "instanton" model [5], i.e., a semi- say, and realized to be imaginary,
classical theory that involves a periodic classical trajectory
on the upside-down potential surface. In this case, 20(E) is IF - -ihO/n (2.1 a)
the classical action integral (in pure imaginary time) for a
complete cycle about the periodic orbit, and {coA (E)}, while the other (F-I) actions are quantized in the usual sem-
k = 1,...,F-1 are the stability frequencies for an infinitesimal iclassical fashion,
perturbation about the periodic orbit. The major advantage
of this theory is that one need not choose the reaction path, = (nk + 1/2)h , (2.1b)
or even the dividing surface, in some ad hoc manner, but
rather the full F-dimensional (classical) dynamics selects the k = 1,...,F-1. The equation
reaction path (i.e., the periodic orbit). The transmission
probabilities are given in this theory by E = EE(t..., n.0) E (n,O), (2.2)

P(F,) = I + exp 20(E)- 20'(E) , hwA(E) (nk+ 1/2)]1. is then solved to express 0 =_ 0 (n, E) as a function of E and
(1.4) the F-1 quantum number n. The transmission probability

then has the semiclassical form
which one sees is very similar in structure to the separable
result given by Eqs. (1.3a)-(1.3d), i.e., P.(E) = [1 +e 20 1-. (2.3)

Parable"(F) I 1 + exp [20 (E- h + 1/2) (1.5, As an elementary example of this general prescription, con-
L Isider a harmonic saddle point, for which

The primary differences are, first of all, that O(E) in Eq. (1.4) F
is computed along the periodic orbit and not along a sep- E(I,. , IF) = Vo + k W w . (2.4a)

arable one dimensional path as in Eq. (1.5). Also, the con-
stant frequencies {o9A} in Eq. (1.5) are replaced in (1.4) by Making the replacements in Eq. (2.1), with Wp = -ilcoFl,
the energy-dependent stability frequencies of the periodic and solving Eq. (2.2) leads to
orbit. And finally, the periodic orbit result, Eq. (1.4), inher-
ently assumes that the energy in the activated complex is F-1
small compared to the total energy, and the exponent in Eq. 0In, E) = 7 o+ Z ho (ni + 1/2) - E) (2.b)
(1.4) is expanded to first order in this energy. If the action h1 k) (4

integral O(E) were a linear function of E - i.e., if the barrierwere assumed to be parabolic, as in Eq. (1.3e) - then this i.e., Eq. (1.3e), the harmonic result discussed above.
woresuled o be aaoiatio, b in ge e thi s A less trivial application of this general prescription Eqs.would not be an approximation, but in general it is. Thus (.)(.)wsgvnrcnl 91b sn etrainte

the periodic orbit result, though clearly better in many ways (2.1)-(2.3) was given recently [9] by using perturbation the-

than the separable approximation, has the defect that it is ory to include the effects of cubic and quartic an-

not correct in the separable limit if the barrier is anharmonic. harmonicities about a saddle point. If {qK}, k= 1,...,F
denote the usual mass-weighted normal mode coordinates
at the saddle point (i.e., the harmonic potential is

II. Semiclassical Transmission Probabilities Including Vo + Z 1/2ok qD), and
Anharmonicity

A more rigorous way of including anharmonicity into the / 
3V

transition state transmission probabilities is based on the J ( = - (2.5a)
set of "good" action-angle variables associated.with the sad- \ aqj ,q 0

die point on the potential surface [6]. The good action var- /

iables about a saddle point are in complete analogy with , ( ) (2.5b)
those associated with a minimum on a potential surface. In M a, aq, aqi aq,, 0
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are the cubic and quartic" foice constants, then the classical. V(x) = Vo seeh2 (x), (23 1 a)
energy is given in terms of the good actions {(k} by

whichis often used to model anharmonic barriers. The one-
F F dimensional WKB action integral for it is given by

E(I, ..,IF) = Vo + E tklj, + E, XkIkak., (2.6)
k I, k 5 k' Io

where the anharmonie constants {Xk.k,} are given in terms O(E) = iT _ (Vio-,/E), (2.lb)
of the cubic and quartic force constants,

I [f fjl(8o~ -3Co1) - ucio f0iX k [ {I2 kkk 1- w(4wv J (2.7a) so that the energy asa function of 0 is

XI=-0 2 Vo 0  02 h 2 
a

2
_ = _ A. E E(0) = Vo - h -+ - (2.1 c)
4 "kWI rn-I (2.7b)

F 2fx'2 (o + wto - 3 co2)
+ E i.e., the energy is given exactly as a quadratic function of

the action. One thus feels that Eq. (26), and the transmission
probability that results from it, can have a useful range of

for k # I. With the replacements indicated by Eq. (2.1), validity for including the effects of anharmonicity of the
Eq. (2.2) is a quadratic equation for 0 which is readily solved transition state.
to give Is it possible to apply the general semiclassical theory of

Eqs. (2.1)-(2.3) non-perturbatively? The following proce-
tA E (J2i_ _ (2.8) dure is one scenario. The idea is to use quantum mechanics

0 OF V1'+ I4XFFAU(hfr)2,)' to obtain the energy in terms of the quantum numbers (i.e.,

where action variables) by diagonalizing a Hamiltonian matrix.
Thus suppose that the potential is harmonic plus cubic

AE = Vo + c." - E (2.9a) and quartic anharmonic terms. One first imagines that all
the frequencies {wk} k = 1,...,F are real and writes out the

with simple (analytic) matrix representation of the Hamiltonian,
P-1 H,,.,, in the harmonic oscillator basis (where here n and n'

C: E ho -(Ilk + 1/2) denote F quantum numbers). After the matrix elements are
k-I (2.9b) calculated, one makes the replacement

F-1

+ X khxk-(n + 1/2)(nA'+1/2), toF - -iltoF

and whereby the matrix H,, becomes complex symmetric. Di-
F-1 agonalizing it thus gives complex eigenvalues, i.e., the com-

hQF = h (BF - E h2:kr(nk+ 1/2), (2.10a) plex energies that would result in the perturbation expres-
k-I sion Eq. (2.6) if all the actions were replaced by Ik = (nk +

with 1/2)h,k= 1,...,F. That is, when diagonalizing a Hamilto-
nian matrix to obtain eigenvalues - the non-perturbative

(F = iOF = ICOFI, (2.10b) quantum mechanical procedure - all the actions have "au-
tomatically" been set to their quantum values, i.e., (half-

XkF -iXkF, (2.10c) integers)xh. To apply Eqs. (2.1)-(2.3), therefore, it is nec-
essary to fit these numerically obtained eigenvalues to an

(9kr is real). Eqs. (2.8)-(2.10) incorporate anharmonicity in analytic function of the quantum numbers, such as Eq. (2.6)

the energy levels of the activated complex (cf. Eq. (2.9b)), or possibly a more general function, e.g., a Pade approxi-

anharmonicity in the reaction coordinate itself (via XFF), and mant. Once the analytic function E(n) is determined, one

coupling between the reaction coordinate and modes of the can then make the replacement Eq. (2.1 a), solve Eq. (2.2)

activated complex (i.e., reaction path curvature) through the and obtain the transmission probability via Eq. (2.3).
anharmonic constants 91F in Eq. (2.10a).

It is useful to note that having the energy to quadratic III. A Fully Quantum Rate Expression
order in the actions, Eq. (2.6), .an describe anharmonit. ef- The discussion at the end of the prevous bei.tion debribeb
fects quite realisti.all). Morse oscillator vibrational eigen- a quantim mohanknal .aLulational pro .cdure (diagonali-
values, for example, are given exactly through be.,ond order ing a partiLular .omplex symmetr. Hamiltonian matrix),
in (n + 1,2). Also, consider the popular E.kart potential bar- the result of %hi,.h is then used in a .cmidaoial theory.
rier This seems wasteful; i.e., after one has done a quantum
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calculation, one would like to be able to determine the rate Miller, Schwartz, and Tromp [13]. Thus the canonical rate
fully quantum, mechanically, constant is given by

This is possble by realizing that.the complex eigenvalues
discussed at the end of Section II are the Siegert eigenvalues (t

[10" of, the system. This is clear when one considers the 0
boundary conditions satisfied by the corresponding eigen-
functions. For modes k = 1,...,F-1'the harmonic oscillator where the flux correlation function is
functions have real 'frequencies so that the eigenfunctions
will decay in these coordinates in the usual fashion. For Cf(t) = tr[ellt /h e -Ptt2 Fe-11 /2 e-'ilh F], (3.5b)
mode F, though, with OpJ = -i cop I, the harmonic oscillator
functions have the form where F is the flux-through-the-surface operator.,Use of Eq.

(3.4) in (3.5b) (and some straightforward manipulation) give
O.JqF) - exp(iIcopIqF/2h) H(qF), (3.1) the flux correlation function as

where H is a polynomial in qF. This function is an outgoing Cf(t) = - <,WprIFIip,>2 e-P(E1+ j)/2 t(Et-Et)/h (3.6)
wave in both directions qF" + oo i.e., the Siegert boundary
condition. . Since Im (Et - EI)> 0, this correlation function decays ex-

As has been used recently in quantum reactive scattering ponentially as t- co, the correct behavior (which has not
theory [11], though, an outgoing wave basis set is what is been obtained in previous basi.. set calculations of this cor-
necessary to construct a finite basis set representation of the relation function [13,14]). With Eq. (3.6), the time integral
Green's function G+(E) (provided one is interested in matrix in Eq. (3.5a) can be readily carried out, giving
elements of G1 between short-range states). Thus if {Eg},
{ip1(q)}, I = 1,... are the complex eigenvalues (lmE, < 0) and h
corresponding eigenfunctions that result from the calcula- k(T) = -ImF (p ,PIFItp1 >)2 e-t E +EWv/( - E1). (3.7)
tion described at the send of Section II, then one has the
approximation ['11] One can similarly use Eq. (3.3) to evaluate the flux expres-

SV 1W1 OP1l (3.2) sion for the cumulative reaction probability N(E),
iE-- E-E (3.2

which becomes exact in the limit of a complete basis. (Note N(E) = +(27rh)2tr[F8(E-H)F8(E-H)]. (3.8)

that there is no complex conjugation of the wavefunction in
the bra symbol.) The microcanonical density operator is The result of this calculation is
then given by [12]

N(E) = h2 Re~ _______F______ <ipjFIiP,>2

S(E-H) = - -LImG+(E) Tv (E-Er)(E-Ei) (E-E1,)(E-
n (3.9)

= -- L(G+(E)-G-(E)) (3.3) It remains to apply Eqs. (3.7) and (3.9) and test their ease
of use, generality, and efficiency (i.e., how rapidly conver-

Ir ' I 1> <WI -wP i 1} 1 gence is achieved with increasing size of basis set). It is nev-
2it. E-E E-"fE ertheless interesting to see how these formally exact quan-

tum rate expressions can be written in terms of the Siegert
eigenvalues (and eigenfunctions) which are related to the
transition state. Siegert eigenvalues usually are discussed

,,0 -only with regard to scattering resonances [10], for which
e- i lfh = I dE e - E11 8(E- H), (3.4a) the imaginary parts of the eigenvalues are small. Here, on

-C the other hand, the imaginary parts are large - e.g., for a
parabolic saddle point

use of Eq. (3.3) in (3.4a) - and noting that imE <0,
ImEr> 0 - and evaluating the integral over E by closing ImEn = -hi wpl(nF + 1/2)
the contour in the lower half plane, gives (for t > 0)

nF= 0,1,2,.... - and have nothing to do with resonances.

e-itt Z e -E,1h'p t> (P1. (3.4b) This appears to be a totally new context for these quantities.
This work has been supported by the Director, Office of Energy

Research, Office of Basic Energy Sciences, Chemical Sciences Di-
Eqs. (3.3) and (3.4) make it possible to carry out a direct vibion of the U.S. Department of Energy under Contuct No. DE-
evaluation of the exact quantum rate expressions given by AC03.76SF00098.
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A Feynman Path Integral Approach for Calculating. Quantum Rate Constants
in Complex Systems

Gregory A. Voth

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA

Chemical Kinetics / Methods and Systems / Quantum Mechanics / Statistical Mechanics
A theoretical framework is discussed in which imaginary time Feynman path integration is adapted to
define a quantum mechanical free energy for activated rate processes. Recently developed variational
theories for the estimation of this factor, as well as the quantum dynamical corrections to the rate constant,

are also discussed.

I. Introduction Q* = f ... J Dx(T) Dq(T) 8(q* - io) e-Stqt?) xt~lfA (3)

Voth, Chandler, and Miller [1] (VCM) have presented an where q(T) is the reaction coordinate which has a transition
analysis of thermally activated rate processes that has ex- state value of q*, the vector x() constants the nonreactive
tended several aspects of the classical description of such "bath" degrees of freedom, and S q0:),x()] is the imaginary
processes into the quantum regime. As an outgrowth of their time action functional [1 -3]. The quantity iq0 in Eq. (3) isanalysis, VCM have argued [1] that the exact quantum the centroid of each reaction coordinate quantum path q(r)
mechanical rate constant k for a general activated process and is given by [1,2]
can be sensibly written in a way similar to the classical
theory as [1] 1 hd )

kT explo(-d, () (4)
k = Kh _Tex

11 QA A quantum transition state theory may be readily defined

where P equals IlkaT, QA is the quantum reactant partition from Eq. (1) by approximating K to have a value of unity
function, K is a correction factor of order unity, and the [1]. Such a theory has considerable potential for applica-
quantum free energy.of activation is given by tions to many different physical problems because, in the

spirit of classical transition state theory [4], no explicit
F* = -kBTln [Q*i(m,2nhfl)1']. (2) quantum dynamical information is required to estimate the

rate constant [1]. Additionally, the central quantity Q* in
In Eq. (2), Q* is the equilibrium "path centroid densit)'" Eqs. (1) (3) (the centroid densit)) L.an be directl) calculated
[1,2.], defined as the constrained imaginar, time Fe)nman [1] from imaginar) time path integral Monte Carlo tech-
path integral [3] niques [5]. In fact, Eq. (1) has been successfully employed

Ber. Bunsenges. Phy5. Chem. 95 41991 A o. 3 VCH k erlaysgsel hLwjt inbil, If -6940 Ii einhem, 1991 U005-9021,91,0303-0393 $ 3.50 t .25,0
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for. a number of problems, [1, 6,7] and methods to determine model and a similar variational technique [9]. This analysis
the.dynamical correction factor to Eq. (1) (either exactly or of the dynamical correction is in the same spirit as the clas-
approximately) have also been proposed [1, 8,9]. sical Kramers/Grote-Hynes theory, [4,14] particularly as

The justification of the quantum rate equation in Eq. (8) re-formulated by Pollak [11, 12]. Concluding remarks are
may be pursued fromthree complementary points of view the given in Sec. IV.
[1]: The firstapproach relates the centroid density [Eq. (3)]
to the expressions for the quantum rate constant for the II. A Variational Effective Barrier Model for the Centroid
multidimensional parabolic barrier model [10-12]. In that Density
case, Eq. -(1) is exact provided K is taken to be the Grote-
Hynes generalizationof the Kramers dynamical correction In order to calculate the quantum activation factor in Eq.
factor.[1,4,9]. Although the usual quantum parabolic bar- (1), one must evaluate the constrained Feynman path inte-rier model [10-12] exhibits a pathological divergence for gral (or centroid density) in Eq. (3). As a complementary
teme e such12] th its a pathological iver geniste mar and insightful approach to the direct numerical calculationtempratres uchtha hp)o4';-> n (her is he ag-of Eq. (3) [1] by path integral Monte Carlo [5], approxi-
nitude.of the true multidimensional parabolic barrier fre- of E ()ly pah neg al e Caro [5], proiquency [11,12]), that model can be extended to calculate mate analytical approaches may also be pursued (see, e.g.,

runcoelitcn potenl ato alo lte r Ref. [1] for one possible variational extension of the para-the centroid density for realisticbolic barrier model). Most activated rate problems [4] areatures via a variational principle [1]. blcbrirmdl.Ms ciae aepolm 4 r
aTureseviadajvariiation principlef[ . (well described by an imaginary time action in Eq. (3) givenThe second justification [1,2] of Eq. (1) relates the cen-

troid density to the low temperature "instanton" expression by
[4,13] for quantum rate processes which are dominated by ht

tunneling. In that case, K is again close to unity and its S[q(T), x(T)] =J d "T (T- +V)2 + [q(T)]
explicit derivation is discussed in Ref. [1]. The latter semi- 0 2 (5)
classical analysis, although more general, gives the same + ?))I ,2
result as Gillan's insightful low temperature path integral + 2 2
centroid density analysis of a double well potential coupled
linearly to a classical bath of harmonic oscillators [2]. where V,[q(r)] is the nonlinear potential along the reaction

The third, and probably most rigorous, justification of the coordinate q, and V, [q(T), x(r)] is the potential energy term
quantum rate formula in Eq. (1) is closely related to the which contains both the potential for the bath coordinates
method for calculating quantum rate constants put forth in x, and the couplings between the reaction coordinate and
Ref. [1]. In that paper, a procedure was outlined which the bath.
facilitates the efficient sampling of activated quantum dy- For an environment which is well described by linear
namics. In the case of such dynamics, the reactive "events" response theory, it is now well known that the bath can be
which take the system from reactants to products are quite represented by an effective set of harmonic oscillators cou-
rare because of the potential energy barrier separating the pled linearly to the reaction coordinate [4,15]. Specifically,
two stable states. In classical mechanics, of course, the prob- this physical situation is accounted for in Eq. (5) via the
ability of barrier crossing is essentially given by the free potential term
energy of activation. The analogous quantum mechanical
quantity was argued in Ref. [1] to be the centroid density 2 1  x + c, (6)
in Eq. (3) by noting that it is, in fact, the underlying factor Vq.(q,x) = ( .,,o x 2 q) (6)

in the complex dynamical weighting functional which dom-
inates the overall value of the rate constant. The sampling In the above equation, m, and vw, are, respectively, the mass
of the quantum reactive dynamics in thereby greatly facili- and frequency of bath oscillator i, while c, is its coupling
tated by constraining the centroid of the thermal quantum constant to the reaction coordinate q. This model is also
paths to be in the region of the classical transition state [1]. based on the assumption that the reaction coordinate po-
In a sense, the centroid constraint defines the appropriate tential V,(q) in Eq. (5) is "renormalized" so as to contain the
quantum "activated complex" in the path integral language, equilibrium averaged contributions from the interactions
while at the same time allowing for the delocalized nature with the bath ri.e., 1(,I) is a potential of mean force [16]].
of the quantum dynamics. The bath potential term contained in Eq. (6) therefore rep-

In the present paper, two aspects of the quantum rate resents a Gaussian model for the fluctuations of the forces
constant formula in Eq. tl) will be explored. In Sec. II, a on the reaction coordinate about a mean value of zero. The
variational theory for the quantum activation factor fluctuating external force on the reaction oordinate at q*
exp(-flJP') will be outlined which maps the realistic prob- in this model has the form
lem of a nonlinear reaction coordinate barrier potential cou-
pled to a linearly responding medium into a simple separable a V1 x N

parabolic barrier reaction coordinate. A particularly useful - q l c - (
limiting form of this equation will also be derived. In Sec.
III, the problem of the quantum d)namical correttion fac-tor where the quantit) i, is the equilibrium %alue of the ..uor-
will be addressed b) virtue of a multidimensiona. parabolic dinate %, when the effcatie bath is ir equilibuum, but bull
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coupled to the reaction-coordinate with a fixed value of q*. potential to maximize the right-hand-side of-Eq. (13). There-
It has been frequently argued that the influence of most fore, the challenge in such as theory is to pick an accurate
realistic environments on rate processes can be modeled by and conceptually useful reference action. (For one possible
choosing an effective-set of,harmonic bath oscillators with approach, see Ref. [1]).
an appropriate spectral density [15]. A very simple approach is to first simplify the inequality

The path integration in Eq. (3) can be simplified by first in Eq. (13) by invoking the linear response approximation
"integrating out" the bath coordinates in the usual way for the bath [cf. Eqs. (8)-(12)] and to then-employ the
[3,15,17] to give the expression for the centroid density effective reference action

Q* -Q thS'"S Dq(r) 8(q* - o) exp{-Sef[q(r)]/h], (8) S1 O.[q(z)] = Sd{J-2 4()2+ Vo- ym6ob(q-q*)2}, (14)

where QWih is the partition function for the bath in the ab-
sence of coupling to the reaction coordinate, and the effec- The potential of mean force in the reference action is taken
tive path integral action functional Scf[q(r)] is given by, to be simple parabolic barrier with a variationally adjustable

parameter Cob (i.e., the square of the unstable barrier fre-
hd? ( ) )quency). It is important to note that in this simple reference

S¢ff[q()] TJ 2 d 4 (':" + V ,q ()] 5  action there is no influence functional [Eqs. (9) and (11)] so

hi 00 (9) 'that both the nonlinearity of the reaction coordinate poten-
- I dT f dT'a(IT-'I)q(T)q(T'). tial V[q(T)] and the influence of the linear dissipation are

0 -00 treated in Eq. (14) by the single variational parameter Cob.

The evaluation of the inequalityin Eq. (13) and the sub-
In Eq. (9), the potential V (q) is the modified potential sequent derivation of the variational equation for Cb is fa-

cilitated by first re-expressing the reaction coordinate po-

V4(q) = V(q) + - 2ntco q2 , (10) tential V,[q(T)] in terms of its Fourier transform P(k):

V,[ T]=I j dkP,(k)exp[ikq(T)]. (15)
and a(ITI) is the kernel of the imaginary time influence fune- 2n[q(r)] = i- dp(
tional [3,15,17], given by

The average <AS>O* in Eq. (13) is now readily accomplished
I CO e by Fourier path integration [1,3,5] wherein the quantumc (II) = 0 paths q(r) are represented by

The spectral density of the bath J(w) in Eq. (11) is given q(r) = 0 0 ,, exp(i(2. ); i. = q, (16)

explicitly in the linear model [Eq. (6)] by the expression =n E C

[15] and 2,, equals 2nn/hfil. The result of this path integration

n , c- 8(o-wo). (12) for Q 'exp(-KAS>*/h) isJ(O)) (1)

Q:' exp (- <AS>:/h) = (m/2 rhfi)"i Qbaih (17)

At this point, the problem of computing the quantum ac- (hl)&b/2)
tivation factor in Eq. (1) via the centroid density [Eq. (3)] sin(h#hbd2)
has been greatly simplified by the linear response approxi- I
mation for the bath. However, the exact analytic evaluation where the effective potential V9(&b,q*) is given by
of the effective path integral in Eq. (8) remains a daunting
task for a realistic reaction coordinate potential V,[q(r)]. It 1 00

is therefore advantageous from a computational, as well as Vcdf(wb,q*) =7=- dq (q + q*)exp(q 2/2Aq2 )

conceptual, point of view to employ a variational theory. (18)
Such a theory is possible because of the rigorous inequality + n i( ? )/m+& (18)
for the centroid density [1,18] + n (-,i - CO)

Q* > Q*exp(-(AS>O*/h), (13) The width factor Aq2 in Eq. (18) is also dependent on ob'

and is given by
where Q* is the centroid density for some reference action
So, AS is the difference between the actual and reference 2 2 1 (19)
actions, and ('... denotes path integral averaging in the -= -, 2- (

reference system with the path centroids constrained to be
at q*. A Nariational theory for the reference s)stem ma) then The other important quantit) in Eq. (18) i (,;) %khich is the
be defined b) optimizing the parameters of the referenc Laplate trandbfrm of the , aI auto~ rorelation funtion
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of the envionmental'force fluctuations 8 F,,(t). on the re- - 1
action, coordinate at the transition state. The transform'it 0 -V - q (24)
this:case is' evaluated at z = A, and is explicitlygiven by 06

S dqV,'(q+q*)exp(-qI2Aq2).

= P :dte- ' <Fx(t) xt (0)>q. (20)
01 The utility of the latter equations lies in the fact that only

classical equilibrium properties are required for :the evalu-
where (...>q. denotes classical Boltzmann averaging over ation of the quantum rate constint.
bath variables which are equilibrated with the reaction co- The accuracy of these variational equations may be tested
ordinate fixed at q*. on a model problem of an infinite harmonic bath [cf. Eq.

The optimal variational parameter CT for use in Eq. (17) (6)] coupled to a reaction coordinate-with an Eckart barrier
is obtained by maximizing the right-hand-side of Eq. (13) potential [19]. The bath in this model is characterized by a
with respect tob & . The resulting transcendental equation is classical friction of the form

0 12n1(f2n) q (t) = q (0) exp (- ttc), (25)

2(b nl(2%&) A' V2iCb=c I where the timescale of the classical friction te1 equals 4wc'[.
2)2  (21) (Here, a)-' is roughly the timescale for a classical particle

0i (to fall off of the Eckart barrier in the absence of coupling

fc dq V"(q+ q*)exp(-q/2Aq, to the bath). The quantity which was calculated is the ratio
-de of the quantum to classical activation factors, given by

where V '(...) denotes the second derivative of the nonlinear 1' = e-lFr'e -P'o, (26)
potential of mean force along the reaction coordinate. The
above equation can be efficiently solved by an iterative pro- where VO is the height of the potential barrier at the tran-
cedure on a computer. It is also important to note that the sition state (q = q*). This ratio was determined for various
classical friction and the potential of mean force along the values of q(O) (shown in fractions of mow). In Fig. 1, the
reaction coordinate are the only quantities required to solve results for r, are plotted from a full path integral Monte
Eq. (21) and hence to estimate the quantum rate constant Carlo calculation of Eq. (2) with the exact action in Eq. (9)
from Eq. (1). In general, a positive classical friction leads to (open squares), from the rigorous variational equations
a lower effective barrier frequency in Eq. (21) than one would
obtain in the absence of friction. Stated differently, tunneling 18
dynamics in the presence of dissipation is equivalent in the
present theory to the simple tunneling of a particle through
a broader potential barrier.

For many realistic physical situations (e.g., intramolecular
proton transfer in polar solvents), the timescale t, of the
classical friction q(t) is considerably longer than the time-
scale for the quantum particle along the reaction coordinate. Fa 9 "
In this case, a considerable simplification of Eqs. (18) and
(21) results, This simplification arises due to the limiting
expression. %%

ij(g2 c) = f ,i j dte-a"tl(t) nt(O) fdte- Q.
0 tda-c 0

0
= tj(0), (22) 0.0 0.5 1.0

where q(0) is the value of the classical friction at t = 0. Fig. I (o)

Eq. (18) then simplifies to Results for r. [Eq. (26)1 for an Eckart barrier coupled to the bath
with a classical friction given by Eq. (25). The open squares are

1 cc obtained from a full path integral Monte Carlo calculation of
VAC([bq*),f.-(q + q*) Eq. (2) with the exact action in Eq. (9), the solid line is from the

- ccdq* - (23) rigorous variational equations given in Eqs. (17)-(19), and the

- V,"(q+q*)Aq2/2]exp(-q2/2Aq2). dashed line is from the limiting theory based on Eq. (17) with theapproximate equations in Eqs. (23) and (24). The height of the

Eckart barrier is 2000 cm- 1, and the magnitude of the classical
Additionally, the transcendental equation for the variational un:table barnet frequent.) ib 1047 ,m '. The tempertture in the
parameter Colb simplifies to calculation was 188 K
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givenin Eqs. (17)-(19) (solid line), and from the' limiting out such an efficient reactive sampling procedure, a "brute
theory based on Eq. (17) with the approximate equations in force" dynamics calculation for realistic problems would be
Eqs. (23) and-(24) (dashed line). The two sets of variational, enormously time consuming and, essentially impossible.
results are clearly in~good agreement with the exact Monte (Even with the above procedure, a quantum reactive dy-
'Carlo calculation of-the quantum activation factor. It is also namics calculation may still be very computationally de-
interestingto note that the disagreement between the exact manding!)
and varih?ional results diminishes rapidly with increasing As a complementary approach, it is clearly desirable to
strength of the friction. have simplified theories to estimate the value of K as well as

to provide some physical insight. Theories of this sort are,
III. Variational Theory for the Dynamical Correction for example, in the same spirit as the Kramers [4] and

Factor x Grote-Hynes [4,14] corrections to classical TST. In order
to proceed in an analogous fashion to the latter authors, aAlthough the basic form of the equation for the rate con- model for the dynamics may be employed in the evaluation

stant in terms of a path integral centroid density has been of Eq. (27). For example, the simple choice of free particle

established [Eq. (1)], an exact analytic solution for the gen- of yi es the sult hoie o free p a p-
eraldynamics yields the result K = I (i.e., a quantum TST ap-
obtained. An accurate desription of is, however, desirable proximation), while if a multidimensional parabolic model

because -that factor contains additional multidimensional is employed one obtains the result K = KGu (i.e., the Grote-
dynamical and tunneling effects which are not already in- Hynes correction) which accounts for the coupling between

cluded in the centroid density Q* [1,9]. a parabolic reaction coordinate and a linearly responding

The exact quantum mechanical expression for the trans- bath. In the latter theory, the transmission coefficient has

mission coefficient is given by [i the well known form [14]

K - (27ttnfl)"' I dq * v(q), (27) o b + to 00 /m '

where Qc(q) is the centroid density [Eq. (3)] at a general where ,i(2o*) is given from Eq. (20), and cob is the magnitude
position q along the reaction coordinate, Q* equals Q(q*), of the parabolic reaction coordinate barrier frequency.
and v(q) is given by the quantum dynamical expression [1] The utility of the parabolic model is derived in part from

the fact that the exact dynamical result for the correspond-
2 ing rate constant [10] can also be obtained directly by sta-

= -Im (8 tistical mechanical methods. The central feature of the latter

- <qJe t/Aih he-"'401q'(28)) analysis is a coordinate transformation to a separable set of
"Q normal modes [11,12]. In that procedure, the potential

energy function for the fully parabolic model, given by
Here, hA(.") [ha('")] is the population operator for the re- Eq. (6) for V, (q,x) and
actant (product), and the imaginary time path integral [3,5]
for (q'je-fUiq">() has the centroids of its quantum paths
constrained to be at a position q along the reaction coor- V(q) ; Vo - -"-'-m;(q - q*)2  (32)
dinate. For notational simplicity, Eq. (28) has been written
in terms of the reaction coordinate only, but inclusion of
the bath modes is straightforward. Eq. (28) can also be writ- for the reaction coordinate, is first transfuimed into the sep-
ten in a cyclic path integral form as [1] arable form [11,12]

2 N(q) =-ImDqa()JDqb(t)JDqc(t) H = + (V - 1 0.22) + - -(p 2 j,+ ).jy), (33)
T, T 2 2 j 1 2
"8(40,a - q) 11A [qa (0)] hB [q.(hfl)] (29)

where 0 is the unstable normal mode with a squared imag-
IIB[qb(At)]e- -"(q), inary frequency -) . , and the y,'s are the uncoupled stable

normal modes with frequencies .. For this multidimensional
where the S,[ .]'s denote real time actions [3b], and the quadratic Hamiltonian, it is immediately obvious that one
limits on the path integrations are should choose the unstable mode g as the true multidimen-

sional reaction coordinate since no recrossings of a transition
q.(Jlh) = qb( 0), qb(At) = q,(0), q (At) = q,(O) (30) state at Q = L2" are possible and transition state theory is

therefore exact [11,12]. This choice of reaction coordinate
which are also integrated over. In principle, Eq. (27) facili- is to be contrasted %Nith that of the "bare" reaction coordi-
tates the exact determination of the transmission %,oeffi,ient nate q (%,hidi is obxiuusl) the ,orreot ,hoic in the absenwe
from a real time quantum dynamics calculation [8]. With- of any coupling to a bath).
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The exact quantum rate constant for multidimensional The opti..zation of the right-hand-side of Eq. (13) for the
'Parabolic model-may then be expressed:as [9] reference system in Eq. (37) can be performed explicitly [9]

and yields the transcendental equation for @',:
kBT (34)k p s = e x p ( / / -2, ( 3 4

MOMw. dqV,((q+q*)exp(-q2/2Aq2), (38)

where the quantum-activation free. energy is given in terms
of'a centroid density by where V,"(...) is the second- derivative of the potential of

mean force along the reaction coordinate, and the width
F* = -kBTln[Q/(l1/2nh 2j3)V2]. (35) factor Aq is given in this case~by

In Eq. (35), Q denotes the centroid deisity in mass scaled 2 1
Aq1  

(39)_______coordinates With the centroids of the true multidimensional fm' I 2 £ -I + 2 j(fl)/m"
reaction coordinate paths Q(r) constrained to be at their
transition state value e*. In other words, the centroid con- Note here that, as in Sec. II, q(f ) is given by the classical
straint is now on the true multidimensional reaction coor- expression [Eq. (20)] evaluated at z ='Q,. Therefore, for a
dinate a rather than on the bare reaction coordinate q as in realistic problem one might employ classical molecular dy-
Eqs. (1)-(3). namics to evaluate Eq. (39) as input to the transcendental

On the other hand, for the parabolic model it is possible equation for &, [Eq. (38)].
to derive a simple relationship between the quantum acti- After a determination of Cobk for therealistic reaction co-
vation factor. along q (at q = q*) and the activation factor ordinate potential, one may then employ the relationship in
along e(at a = Q*). This relationship is [9] Eq. (36) to relate the variational/parabolic activation factor

along q to the activation factor along the more realistic
exp(-flF*) = (Ao"/ob) exp(-flF*). (36) variati6nal/parabolic estimate of the multidimensional re-

action coordinate 0. The resulting expressions are [9]:
Thus, for-the parabolic barrier/harmonic bath model, a cal-
culation of the centroid density at the transition state of the exp(-flF T') = '?_exPF*); lo' M +( (40)
simple reaction coordinate q is equivalent to a calculation CObI 10' + f
of the centioid density at the transition state of the true
multidimensional reaction coordinate e provided the former The quantum transmission coefficient in Eq. (1) which is
result is multiplied by the correction factor ).O+/cb [9]. This appropriate for nonlinear barrier potentials is therefore
,perspective defines the transmission coefficient as the cor- given by [9]
iection factor one must include in the calculation to com-
pensate for being in the wrong transition state [9,11,12]. K = 70/ob, I. (41)

The perspective on the transmission coefficient outlined
above can also be exploited to develop a theory for K in The transcendental equation in Eq. (40) -which defines 79+
systems having a nonlinear reaction coordinate potential clearly has the same from as the classical Grote-Hynes result
[9]. In particular, the result in Eq. (36) may be combined [Eq. (31)]. However, because the effective barrier frequency
with the variational principle for exp(-fF*) based on the Cbb is optimized through Eq. (38) to characterize a nonlinear
inequality in Eq. (13). The actual variational methodology barrier potential of mean force, it generally decreases with
in this case, however, differs somewhat from that discussed decreasing temperature in order to capture the anharmonic
in Sec. II. Specifically, a reference action is now employed nature of the potential and the quantum tunneling motion.
in the form [9] Thus, for nonlinear barriers at lower temperatures there is

effectively a lower variational barrier frequency b,, than at
[-] d . 1 ~2 *)2 higher temperatures. According to the powerful insight pro-

~()] = dT T r)'+(x)2  V- 2 N (q- q* vided by the Grote-Hynes relationship [Eq. (31)] [14], a

(37) system having a barrier with a low frequency (or curvature)

_ , dr I d'Vo'(IT- x'I)q(r)q(-c'), "feels" the entire spectrum of the bath fluctuations much
o -oo more than one with a higher frequency (or sharper) barrier

As a results, the factor K = l.l/wbt in the quantum rate
where the linear dissipation of the bath is now explicitly equation [Eq. (1)] should be less than the classical Grote-
included, and there is a new variational parameter &2 Hynes value KG11 = )0*/(Ob [9].
(which generally differs in value from i', in Sec. II). In Eq. An example of the temperature dependence of the quan-
(37), the variational parameter specifically treats the anhar- tum i, in Eq. (41) is shown in Fig. 2 for the same Eckart
monicity of the actual potential of mean foruc along the q barrier, infinite harmonic bath system described at the end
direction, while the influence of the bath oscillators is de- of S&.,. II. The solid line is the "quantum Grote-H)nes" result
scribed explicitly through 7.(lr - z) [cf. Eqs. (11) and (12)]. 4.akulated from Eqs. (38) - (41), while the dashed line is the
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Quantum Brownian Motion and its Classical Limit
Vinay Ambegaokar*)

Institut rnr The6rie der Kondensierten Materie, Universitfit Karlsruhe, D-7500 Karlsruhe 1, Germany

Chemical Kinetics I Diffusion / Nonequilibriumn Phenomena
The Feynman-Vernoii, CaldeirA-Leggett model for a quantum dissipative system is used, via a general
kinetic equation due to Chow, Browne, and the present author, to cast light on the classical limit of
-quantum Brownian motion,.with special attention paid to the requirement.of coarse graining in time.

p2

I. Introduction H =
In §,2 of Kramers' classic paper [1], which we are here 2 +n (.)

to celebrate, he discusses the conditions under which simple + 1 1 + ( Cq 2"
equations governthe diffusion of a classical Brownian par- + 2mi, 2 ,7 2q-
ticle. Central to his thinking is the existence of a "range of
time intervals T which has the following properties: On the
one hand T must be so short, that the change of velocity To keep thelength of the present article reasonable, it will
suffered in the course of T may be considered as very small; be necessary to refer to Ref, [2], in which the notation, with
ov: the other hand T'must be so large that the chance for X rare exceptions, is identical. There, the thermodynamic field
[the "irregular force"] to take a given value at the time t + T theory for this model was set up. A crucial point is that the
is independent of the value which X possessed at the tite-relaxed reduced density matrix for the system described
time t." by the variables p, q is the object for which a formal integro-

In this contribution I discuss how this requirement differential equation is always valid. This quantity is defined
emerges in the classical limit of a model of quantum Brown- by the equation
ian motion, for Which a completely-general quantum kinetic
equation formulation wa ,gjtven some years ago [2,3]. The (tl t2) = TrB[U(ti, - co) a(- co) Ut0 2, - co)] (11.2)
derivation does not make the assumption that the system is
weakly damped. where the trace is over the environment variables, U(t, - co)

In a certain sense,,what follows is an exercise in futility: is the time evolution operator corresponding to the full
the model used is known to lead in the appropriate limit to Hamiltonian (11.1), and Q(-oo) is the initial density matrix
the classical Langevin equation [4] which is Kramers' start- for the system and bath in the distant past, when the oscil-
ing point. On the other hand, the passage to the classical lators are assumed to be in equilibrium. The reduced de:isity
limit via the kinetic equation shows that this equation, which matrix for the system is d (t, t), i.e. at equal times, which we
contains memory effects, itself signals the scale on which shall call d(t). This is the quantity (like 6 a matrix in the
coarse graining in time is needed if a simple Markoff equa- Hilbert space of the system) which most kinetic theories deal
tion is to'be valid, and it is instructive to see how what has with. While it is true that averages of dynamical variables
to happen does in fact happen. of the system can be calculated once 6 is known, the time

It is also interesting to note that this procedure cures a evolution of 6 need not be, and in fact is not, simple on all
"positivity problem," pointed out to me by P. Pechukas [5], time scales. On the other hand, the general principles of
thereby casting light on the extensive literature on the so- statistical quantum field theory lead to the following kinetic
called Dynamical Semi-groups [6]. equation for G:

I1. Procedure - [Ho+Rea,
11.1. Kinetic Equation \ + ,t2 ,, (11.3)

Consider the Feyrman-Vernon [7], Calderia-Leggett [8] - [d, Reg] = {A, 6} - -I .
model for dissipative quantum mechanics. This is a "system" 2 2
plus "environment" scheme, in which the environment is alare nmbe ofharonc ocilatos euiibrtedby latin There are many symbols needing definiton here, of whichlarge number of harmonic oscillators equilibrated by fiat in tesmls sHtesse aitna pim ~)

the istat pst. he Hmilonia isthe simplest is H0, the system Hamiltonian (p'-12t) + V(q).
Before getting involved in all the other definitions, it may

be useful to step back and observe that (ii.3) has a standard
form for a kinetic equation, with the left hand side describing

*) On sabbatical leave from. Laboratory for Atomic & Solid Stite the drift of excitations, and the right hand side collisions
Physics, Cornell University, lthav., NN, 14853-2501, LSA. ["sitttering in" and "scattering out"] betNeen excitations.

Ber. Bunsenges. Ph). Chein. 95 1991/ Av. 3 1 1 CH I rlug selluh~aft nbf, Ii -0940 l vnunhm, 1991 0(05-9021,9,0303-0400 S 3.50 t .250
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The complication is that, as in any field theory, the left side ulated by an appropriate choice of J(w). In particular, a
includes energy shifts which modify the excitations of the friction force linear in the velocity - often called Ohmic
uncoupled system, and the right side describes the scattering dissipation, - to which we restrict ourselves from now on,
of these true excitations. At a formal level, there is no way corresponds to J(co) = rnywO(we - IC0I) where my is the
of avoiding the fact that these renormalizations involve in- classical coefficient of friction. Here for the first time appears
finite order perturbation theory, which can- ,however be -an upper frequency cut-off, co,. Its reciprocal is the classical
tucked into "self-energy" operators. correlation time of the environment, which plays the role

Now, for the definitions. There are two auxiliary propa- here of the duration of a collision, and will be important in
gators which enter the time evolution of the two sides of what follows.

0( 0): It is worth nothing already that when tj is set equal to t2,0
Gr(t 1,t2) = -iO(t - t 2) Tre[UQt,t 2) bath] (II.4) in the first term of (11.3), thereby constructing a -t6(ti), the

Ga(ti,2) iO(t2 -ti) TrB[U(tl,t2) Qcth] . remaining terms cannot be written as M { (ti)} where M is
a map only in the space of H0. Thus (11.3) does not lead to

Corresponding to each of the propagators d, G', Ga are self an equation of the form studied in Ref. [6]. This feature
energy operators. These are defined by persists, as well shall see, in the classical limit.

Gf'(t1, t2) Go"(tt~t) 11.2. Classical Limit and The Generalized Born
Approximation

+J- 0 d 0 dt; G "(t,,t) o"'(tlt;) Gr'a(t,t 2) Eq. (11.3) needs to be supplemented by equations relating
0(tb) =G'(t|, -oo)d(-oo) GA(-oo, 2) (11.5) the self-energies back to d, G' and G' to make a closed

system. At this point, uncontrolled approximations are hard

+to avoid except in the case of extremely weak damping.
_+ _ , However, in the classical limit, T > hco (T-temperature in

the energy units also favored by Kramers [12]), one can
Products on the right of (11.5) and (11.3) are matrix products argue that, if the inequality ao- , y is satisfied, correc-
in the function space of the system, and folded time integrals, tions to a very simple closure are small. The argument is
as in (11.5), are implied in (11.3). From their definitions (IIA), given in the appendix. The following scheme, called the gen-
one sees that G' and G' are not independent; the kinetic eralized Born approximation in Ref. [2], is then valid:
equation (11.3), obtained by applying time derivatives to the
left and right of (11.5), has been rewritten by introducing G" U'"(tit2) = 0t - t2) qGr'(t,,t2) q + 6(tt -t2)

-Reg LA and Rea -:F. The square brackets d J(o) q2 (

in (11.3) denote commutators and the curly brackets anti- 0 (08
commutators. 1(t 1 , t2) = a(t2 - t1) q(t 1, t2) q.

The preceding may seem unnecessarily formal. However,
this is the nature of quantum kinetic equations; (11.3) is noth- It may be useful to emphasize that this is not second order
ing more or less than the Keldysh [9], or equivalently the pertubation theory because the self-consistent G" and d
Baym-Kadanoff [10], scheme applied to the present prob- occur on the right. The approximation corresponds to the
lem, in which the "system" consists of one particle. The basic neglect of vertex (.orrections and is similar to what is called
point is that "forward" and "backward" time evolution is "Migdal's theorem" in the problem of the electron-phonon
needed for statistical operators. interaction in metals [13]. Within this approximation, it is

The equilibrating nature of the oscillator heat bath is con- straigth forward to work out the kinetic equation. First, note
tained in the environment propagator that for T > ho, the Bose factor [I + i(wo)] in (11.6) may

be approximated by (T/ho) + (1/2). Then for Ohmic dissi-
a(t, t') = j 2 TrB[XI (t).j(t', bth pation one sees that

= 0 J(w) [1 + n(co)] eiQJ -
S

5 . (t1 - t2) = 2myT6(t, - t2) (119)
0 it 0

+ iY 01--(t, - t2).
In the last line n(co) = 1/[exp(/ho) - 1], and J(o) has been
defined via Where 6, is a -function spread out on a time scale o),71.

f2mw For the steps that follow, it is convenient to write (11.3) in

J(2) = 5( Z 1 6(o- o), (11.7) the equivalent form
i m i iwi

Caldeira and Leggett [8], and Leggett [11] have emphasized (1+ - [Ht2 G] = - Ga + 6G3 
- Grd.

the fact that details of dissipative mechanisms can be sim- (11.10)
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Look-at the first term- on the-right of (11.10). Using (11.9), In the lastequation <H>B - TrB[HQth]. With the excep-
(11.8), and (11.4) we have tion of the term 6, Eq. (11.15) is an equation that may be

1 familiar to some readers. It has the feature that in the Wigner
6,= -i2myT- .q2O(ti t2) representation [14,15] it looks exactly like the classical Fok-

2 ker-Planck equation. It would have been surprising if this
8"' 1 equation could have been derived without further approx-

+,im Idt[ 6(ti -_ qG'(t, q (tt 2) (11.11) imiation, since the existence ofthe "range of time intervals"
mentioned by Kramers has nowhere been used. In the next

2 section we examine the physics contained in Eq. (11.16).
+ Id~myb(t, t ~ ~ q (tt 2 ). 11.3. Physics of the New Terms

In doing a partialintegration in the second term, it is im- Eqs. (11.5) and (11. 6) are the central results of this paper.
portant to recognize that G1 has a sharp step function in To the best of my knowledge, the terms called C have not
time. Then, identifying 6J(O) with (awr), a cancellation oc- been previously captured in a form as general as here given.
curs and one obtains It will be instructive to examine these terms - which evi-

[o ] (t, t i) = -i y Tq (f(t, t2) dently describe energy transfers between system and bath
- more generally.

i t -''Gr(t1,tj)q(1,t2) Note, first, that all parts of the Hamiltonian (11.1) involv-
2 at, (11.12) ing only the system variables q,p, drop out of (11.16). Call

the remainder H. Evidently- iq' at 0 0 1 01t t2) ifJ -0o'

H'= Z p  + 12 q Cqq. (11.17)
The reduced density matrix d is constructed on the left of 1 21nj
(11.10) by setting tj = t2.Note, again, that on the right side
of (11.12) the time derivatives do not enter symmetrically, as Consider the contribution of H' to the second term in the
on the left. From the definition of Grand d, (11.4) and (11.2), bracket of (11.16). This can be written as a double functional
one identifies integral.

Daat
at" '(t,ti)I,,- o = Tr 0 [ (11.13) TrB[H'Q(t)] = _q'9q" eisotq' ) e-iso( q')

and • TrB{H'[q'(t)] U'([q'],t, -e) (11.18)

a = -i~rB[Ha~tj)] Qo q '([q"], - oo, (- )

where So(q) is the classical action associated with H0, and
where Q(ti) is the full density matrix of system and bath the U"s are time evolution operators corresponding to H'
evolved to time tj. In a similar way, one can work out all for the Feynman paths q' and q". Now the trace in curly
the terms on the right of (11.10). Further algebra will not be brackets on the right of (11,18), called <H'> below, can be
given here. A perhaps useful hint for someone who wishes explicitly evaluated, the calculation being only slightly more
to check it is that the answer has been tidied up by noting complicated than that for the Feynman-Vernon influence
that the only part of H, given in (I.), that does not com- functional, and I have worked it out in general. However,
mute with the system coordinate q is (p'1'2n), and that the in the classical limit it suffices to assume that the forward,
commutator of this term can be worked out explicitly as q, and backward, q', paths are identical. Then, the general
needed. Finally, one obtains result simplifies to a form, th6 time derivative of which can

S 1-[Hi mT [be obtained directly in the following way:
[-7"= OIn, 61 t [, q 3

t [ d (11.15)

-2i [q, {p, }] + d t ./(
2h r h -1 -1 1l sin co(t- ")C q(z)

where P ," V co 1J (11.19)

{q -
2 ((H>B d(t) - TrB[HQ(t)]) - -my dS" dco dusin-ily - o d sno(t-ii)('l(t)q(tt)

+ (6(t) <H>B - TrB [e(t) H]) q2  (II.16) =my4(t).

+ q (Tr[e(t) H] - 6(t) <HB)q In (11.19) the response of the oscillator i to the classical force

+ q(TrB[Ha(t)] - <H>Bd(t))q}. Cq(t) has been used to eliminate q,(t). This equation shows
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-that C in (11.15) describes aperiodic energy transfers - and sical treatment of dissipation, times corresponding to the duration
an associated loss of. quantum. coherence - between the of several collisions must be averaged over before a-simple theo-
'Brownian particle.and its environment due to collisions, retical scheme emerges. Since this is obvious from a physical point

of view,,a natural question is: has a sledgehammer been used to
crack a peanut? Yes, but the following is new, to the best of my

III. Results knowledge, about the exercise as here presented:

II.I1, PositivityDisease and its Cure (i) Weak dissipation, in the sense of-the relaxation time of the
system being long compared to its characteristic frequencies,

When C is n eglected,,Eq. (11.15) suffers from a disease that was has nowhere been assumed.
pointed out to me by P. Pechukas [5]. Here, I summarize his ii) The general kinetic equation, containing all memory effects and
formulation of the problem and show how it is cured by the new renormalizations due to coupling with the environment, has
terms, been shown to contain the requirement of coarse graining. Unless

Since 0 is a density matrix it must obey <VplOip> ;> 0 for any some such procedure is followed, the equation remembers the
system state I p>. Suppose that at t 0 0 (0) describes a pure state, stochastic transfer of energy between system and environment.
i.e. let (0) = 14'> (4'I. Let the wavefunction Ob(q) be even in q and
choose qi(q) = do/dq. Evidently, (ipld(0)lW> = 0. Now consider The weak damping limit of the problem has been previously
the average in JW> of the time derivative of at t= 0. From (11.15), treated in an explicitly quantum mechanical way [3,16]. In partic-
ignoring C, it follows that ular, in Ref. [31, the resulting Redfield equations [17] were shown,

in the classical limit to lead to Kramers' low damping, i.e. energy
do )diffusion, limit of the Fokker-Planck equation. By contrast, Eq.

<, dt>l = 7(5dqvp(q)q4'(q)) (11.15) when coarse grained gives the full Fokker-Planck equation
dt -,0  which is the basis for §3 and the rest of Kramers' paper.

For arbitrary damping, the implementation in real, as opposed
,(Sdqip(q) d0(q)) (111.1) to imaginary, time of the kind of quantum mechanical scheme used

dq /here remains a largely open-question.
2mTy , Dana A. Browne suggested that the generalized Born approxi-
+ 1 . __(Sdqvq;i)2. mation might capture all of the relevant physics in the classical

limit, and the arguments of Sec. Ii1.1 are due to Mark Oxborrow.
Now, the first bracket on the right of (111.1) is negative and can be I am very grateful to these kind souls for telling me how this work
made as negative as one wishes by choosing ip(q) to be more and should start and end, but they should not be held in any way
more peaked around q = 0. This means that the right hand side responsible for the intermediate steps.
of (IliA) can be made negative, so that at a small positiv6 time 6 It is a pleasure to thank the Alexander von Humboldt-Stiftung
violates the positivity requirement. for a. U. S. Senior scientist award, and Albert Schmid for the hos-

It is instructive to make the criterion for positivity violation more pitality of his institute. I express my gratitude to the organisers of
quantitive, Choose 4'(q) to be a Gaussian centered at the origin this meeting for their invitation. This work is supported in part
with width 1, Then, the criterion for (111.1) to change sign is seen by the U.S. National Science Foundation under grant Nr. DMR-
to be 88 15828.

12 h
2

iP <-h. (111.2) Appendix
4rot Here the neglect of Feynman graphs with overlapping environ-

ment propagators is justified when y << (o,. The connection betweeni.e. that the initial state be concentrated within a thermal de Broglie perturbation theory and Feyninan graphs in the present. context is
wavelength, described in Appendix A of Ref. (2]. Consider first the contributions

The analysis in (11.3) immediately provides a cure for this prob- to 6 of the graphs shown in Figs. 1 (a) and 1 (b). Call these the direct

lem, along the lines suggested in the quotation from Kramers with

which the present paper opened: "coarse-graining" in time over a
few collisions. We have required that o) " , the duration of collision,
be much less than y', the relaxation time. Let At = Kw;' with
K a moderately large number but such that yAt < 1. Then since
quantum coherence will, via C, be totally lost on the time scale At,
an uncontrollable indefiniteness in the energy, momentum, and po- (a):
sition of the Brownian particle will ensue. The uncertainty in mo-
mentum is given by Ap , 1!2mh/At. Correspondingly, the uncer- ti1  t 2  t 3  t4
tainty in x obeys

x h- At >> > (I111.3)

When (11.15)-is coarse grained on the time scale At, the terms in i (b):
will average to zero via (11.19). This, as (111.3) shows, has as a t 2t4
corollary the condition that ( can only be neglected in (11.15) when t
lengths on the scale of the positivity disease are forbidden.

111.2. Concluding Remarks Fig. 1
Direct (a), and Overlap (b) Feynman graphs for 6. The wavy lines

In this brief article, I have attempted to shosv that in tho pasbtge denote ensironment propagators, the solid lines directed to the left
to the classical limit of quantum dissipation, as in the purely clas- (right) G,,', and the lines .vith two opposed arrows G0
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Traversal time in tunneling has become a somewhat controversial subject, and this note presents a personal
perspective on some of these discussions. There is a widely invoked linear relationship yielding dwell time
as a weighted average of traversal time and reflection time. I assert that it is totally without basis. Many
authors follow wave packets through barriers. The results of such calculations are hard to correlate with
experiment. Stevens has provided a wave packet approach which avoids some of the problems typically
faced by such analyses; nevertheless its analytical details are questioned. The significance of complex
traversal times, favored by some investigators, is questioned. The relative merit of various possible "clocks"

in the analysis of traversal time is discussed, but without definitive conclusions.

1. Introduction available views has widened, and experimental results have

How long does a particle tunneling through a barrier appeared [3]. This is not a settled and mature field, there
interact with that barrier? This question ',as investigated are genuinely murk) aspects and unsettled questions. Un-
by MacColl [1], and on many occasions since then. The fortunately, the highly visible ontroversies and the areas of

work by Biittiker and Landauer [2] triggered a more inten- real diffi,.ult, have little relation, in my opinion. An example
sive and systematic concern with the question. For a number of a real diffi,.ult,, which we will not take up in detail here,
of years following Ref. [2] the papers on the subject ex- was cited in Ref. [4]. There it was pointed out that the
pressed a diversity of opinions, but generally some degree approa..h of Ref. [2], applied to tunneling in the midst of a
of overlap with Ref. [2]. More recently the spectrum of forbidden gap in a periodic, potential, leads to anomalousy1 ,

Ber. Bunsenges. Phs. Chem. 95 1991, Nu. 3 i_ VCH I erlapytealldiajt nibH, If -0940 If enheun, 1991 )J5-Y0.2A,91,J)U.vi4i4 S .J.o t .25jU
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large velocities. There are other physical situations which In a remarkable variation onEq. (1,1) Ref. [14] divides
exhibit. the sameproblem, e.g. frustrated internal reflection by the transmitted current, rather than the incident current,
'of electromagnetic Waves. to obtain a so-called "traversal time".

This -isnot, asystematic review; rather it is, an informal
commentary. It ,represents a personal viewpoint, and is 2. Relation Between TD, TT and rR
bound to appear controversial to some'readers. Systematic A widely invoked relationship is
reviews have been provided by Hauge and Stovneng [5],
Biittiker [6], Jonson [7], and'by Leavens and Aers [8]. We
refer the reader to these for a more extensive listing of the rD = TrT+RrR, (2.1)
literature. Some disagreement with Ref. [5] has already been with T and R representing, respectively, transmission and
registered in response [9] to another publication by reflection probability. This is the most widely accepted of
Stovneng and Hauge [10]. Other disagreements with Refs. several 'viewpoints with which I take issue. It is a pivotal
[5] and'[1O] were recorded in Ref. [6]. point in.Ref. [5] leading to the conclusion there: "It is not

Ref. [2] invoked a time-dependent, sinusoidally modu- clear that a generally valid answer [to the traversal time
lated, barrier potential with a very small modulation am- question] exists". But Eq. (2.1) is also advocated in Ref. [7],
plitude. If the modulation period is long compared to a qu estin xs s 1)is als avated7in Represumed traversal time then the tunneling particle will see by Leavens and Aers [15,16], and by Leavens [17]. Re-
apbrrimer tvenal wie isn charateisgarticl e time ofe markably, Eq. (2.1) is treated by some of these investigatorsa barrier potential which, is characteristic of the time of

as one which is immediately and conspicuously valid, andincidence for the particle. If the modulation frequency is needs no justification. I find this intensely puzzling. Of

increased sufficiently, the particle will no longer see a small

part of the cycle, and we can expect a serious deviation from course, we can always perform the averaging operation in-

the adiabatic approximation valid at low modulation fre- dicated on the r.h.s. of Eq, (2.1). But it is then up to the
q atienc Thiscangeoximan havair can be intcrpdasn r proponents of Eq. (2.1) to demonstrate that this averagingquencieo,. This change in.behavior can be interpreted as an ,oside il h aeqatt D eie rgnlyi

approximate indication of what we have called the traversal does indeed yield the same quantity TD, defined originally in
a totally different way, e.g. as in Eq. (1.1). Note that Eq. (1.1)time, TT. This traversal time is not the eigenvalue of a Her- and Eq. (2.1) together yield

mitean operator, and is not necessarily a precisely measur-

able quantity, Indeed the traversal time of Ref. [2] may JV,21 dx =-jTT+jRTr, (2.2)
represent an average over a distribution of possible times d
[11,12], rather than a single crisp value. In complete aia-
logy to the traversal time for transmitted particles we can suggesting that the integrated density under the barrier con-
also evaluate a time, TR, for the barrier interaction of the sists of two contributions, one associated with transmitted
reflected particles [13]. Our approach to TR (and TT) is in- particles and one associated with reflected particles. For a
tended to answer: How long have the reflected (transmitted) classical beam with reflection and transmission probabilities,
particles spent in the barrier? It is not necessarily an increase as already invoked, that is sensible [18]. In quantum me-
in particle delay caused by the insertion of the barrier, when chanics, however, we typically do not add particle densities,
measured far from the barrier (assuming, foi the moment, but add wave functions. Thus, we can ask what is the wave
that such measurements are possible). We return to that function which results in a beam going out to the right, with
particular question in Sec. 6. nothing going out to the left. This will be a wave function

The literature on this subject frequently invokes a dwell with particles incident from both sides of the barrier. We
time TD, defined in a variety of ways. (See Refs. [2] and [13], can also find the wave function which only has particles
as well as the cited review papers for detailed discussion). emerging from the barrier, all going to the left. These two
The simplest approach is to invoke a stationary state with wave functions, added with suitble coefficients, do yield our
a time independent flux j incident on the barrier. The dwell desired state, with particles incident from only one side. But
time is taken to be even these two additive wave functions do not correspond

to the situation tfiat the proponents of Eq. (2.2) have in
'rD = I 7 JwI' dx, (1.1) mind. As stated these two superposed wave functions will

J B both have particles incident from both sides.

with the density of particles integrated over the extent B of Bittiker [6], following a suggestion by Pippard [18], cal-
the barrier. zD is, thus, the time required for the incident flux culated the diminution of transmitted particles in a barrierto supply the integrated particle density under the barrier. which absorbs, i.e. has an imaginary component to the bar-Coside classicsintuationindi particle sensitrtebamris. rier potential. The resulting reduction turns out to be pro-incident on a region which can reflect or transmit carriers, portional to the dwell time, rather than the traversal time.pncderas tou a eisof suiccnesvect oasit hers, The physical interpretation for this result: The absorptionp erh ap s th ro u g h a series o f su ccess ie w alls w ith h o les, p o s- a t n a l t e p r i l si h a r e ,t e a n t - w t i-sibl-oscllatng o rottin idrections perpendicular acts on all the particles in the barrier, they cannot - within
sibly- oscillating or -rotating -in - the n ar the barrier - be separated into a transmitted component
to the incident beam. In that casejkifedx with e the linear adarfetdcmoetB and a reflected component.
particle density, clearly represents the average time spent Leavens and Aers [15] do jubtify Eq. (2.1) in a bupplc-
in B. mental way by a brief reference to Feynman and Hibbs [19],



406 R. Landauer: Traversal Time in Tunneling

and" this is-echoed by Jonson [7]. Ref. [15] asserts that distinction between photons and electrons. In the case of
Eq. (2.1) photons we can put a great many of them into the same

"... must-hold because a particle, incident on the barrier incident photon state. We can tap off a small portion of the
is either transmitted or reflected (these are exclusive rather incident electromagnetic energy and make measurements on
than interfering alternatives in the language of Feynman it, leaving most of the photons undisturbed to go through
and Hibbs.)" some interesting region. We can then do the same after the

photons have emerged from the special region of interest.
Now, ifwe were to evaluate the average z-component of In the case of electrons, of course, we have at most one per

spin, after encounter of a barrier, that reasoning would be quantum state. Timing measurements, on an external clock,
applicable. But if tD relates to the behavior in the barrier, are likely to be disruptive events [24]. It is possible, how-
why are the possibilities".., exclusive rather than interfering ever, that experiments performed on many wave packets,

prepared in an identical fashion, can circumvent this prob-
lem.

3. Wave Packet Following Several recent papers have applied Bohm's approach to
A number of investigators like to follow wave packets quantum mechanics to the study of traversal time

through barriers and we cite only two recent efforts [20,21]. [17, 25, 26]. In this approach we follow an ensemble of par-
As stressed in Ref. [5], we can follow a peak, or else follow tides, each following a classical path. The quantum me-
a center of gravity. Biittiker and I have, in the past, argued chanical phase of the wave function is given by the solution
that incoming peaks do not, in any simple physical sense, of the corresponding Hamilton-Jacobi equation, much as in
turn into outgoing peaks. Similarly for the center of gravity, the case of the WKB approximation. The wave function

Are electrons incident on a barrier necessarily in the form magnitude is also determined by the spread or convergence
of a wave packet? That, of course, depends on the electron of nearby classical paths, again as in the WKB approxi-
source. Electrons released by a shutter, externally controlled, mation. The classical path, however, is not that due to the
and open fora specified time, are wave packets. Electrons actual potential, but due to a potential which supplements
coming out of a typical electron reservoir [22], analogous that by a "quantum potential", which in turn depends on
to a radiative black body, are not that clearly wave packets. the actual exact wave function. The classical nature of the
Ken Stevens, in correspondence, has argued that the time motion (but not in the original potential) then makes the
between successive inelastic events in the reservoir acts much identification of time spent in a given region a trivial con-
like a shutter. These inelastic events are, however, not ex- ceptual problem. Ref. [25] demonstrates that for a wave
ternally timed. Wave packets require correlation between packet approaching a barrier, all the transmitted paths come
nearby energies. Way inside a reservoir one should be able from the front of the wave packet, all the reflected paths
to invoke 0 - exp(-flH), which exhibits no such correla- come from the tail. In my opinion that is not a physically
tions. It is this view which allowed me to rederive the Ny- meaningful result.
quist theorem from the viewpoint which calculates conduc- An interesting approach to wave packet following has
tance from the transmissive behavior of the sample [23]. been developed by Stevens [27 - 29]. It is a little less delicate
On the other hand this is a difficult question, not necessarily than the other wave packet discussions because it does not
settled by the brief allusion to exp(-lH). It is really the require identification of a peak or center of gravity. Stevens's
complete Hamiltonian, including coupling to phonons, that approach, however, has a more significant advantage. Many
must be invoked in exp(-fPH). . Furthermore exp(- PH) authors (for an example, see Sec. II B of Ref. [5]) discussing
applies to a closed system, rather than to "way inside a wave packet propagation, apply the stationary phase ap-
reservoir." proximation uncritically, even when the dependence of

The wave packet following papers, typically, provide a transmitted amplitude on energy exhibits a strong exponen-
mathematically correct analysis. It is not illegal to discuss tial variation. Stevens's work escapes that problem, the ex-
the trajectory of a peak before it reaches the barrier, and ponential behavior is taken very explicitly into account.
after it emerges. It is, however, up to the proponents of such Stevens's first results [27] preceded Ref. [2], and are in
a calculation to demonstrate that this is a physically inter- agreement %ith it. Stevens's approach has been criticized by
esting and signifit-ant quantity, and relatable to experiment. Jauho and Junson [30], based on numerical calculations. I
Let me indulge, here, in asomewhat exaggerated and playful will nut try to emaluate the validit) of that criticism. I do
analogy. A theory can, perhaps, be generated describing the discuss some other questions posed by Ste cn's work in the
length of time it takes to write the tunneling Hamiltonian Appendix. The critique of Ref. [27 29] has been relegated
on a blackboard. If done carefully, it may be a c orre, the- to an Appendix, because it is presented with less confidence
ory. But it is up the proponents of such a theory to dem- than our other material. ENen if my .ritique is %alid, it is
onstrate that this time is interctng. Furthermore, the pro- possible that a repaired anal)sis, alung the lines originally
ponents of this viewpoint have no basis arguing with the presented by Stevens, would yield his original results.
authors of our other citations, because their answer differs.

It is incumbent upon those who follow wave packet peaks, 4. Can Traversal Time be Complex?
or wave packet centers of gravity, to tell us how to relate A good man) papers in this field advocate a complex
that to measurement. In that connection we btress the great traversal time, and w can cite only a sampling [11,31 35]
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(Note, however, that Ref. [35] was subsequently reinter- Is the traversal time totally independent of the choice of
preted, somewhat, by one of its authors [36]). It is clear that clock? Very likely not. In the case of an image charge on
'there are a variety of reasonable analytical procedures which an electrode surface, adjusting to the motion of an electron
lead to a-complex time, related to tunneling. We can, after through a barrier, it is clear that the adjustment is most
all, take any two characteristics of the tunneling process with important when the electron is near one of the two elec-
the dimension of time, and construct a complex number out trodes. That is not necessarily characteristic of other clocks.
of them..l totally agree, however, with Refs. [5] and [7]-that That dependency, however, hardly inviolates the general
the duration of an event is a real number. It cannot be corn- utility of the concept. Consider, as an analogy, the uncer-
plex. Has anyone seen a stop-watch with complex numbers tainty principle AEAt - h. It really needs a great many
ci, its dial? If traversal times are best characterized by a footnotes to make it precise; that does not make it uninter-
statistical distribution [11,12], that distribution may need esting or useless. For example, consider two similar wave
many numbers for its total characterization. But combining packets following each other, but far apart. The applicable
two of these to form a complex number, does not yield a At is that of the separate packets.
better traversal time. Of course, anyone can give a complex The Larmor clock for tunneling was introduced by Ry-
number the label traversal time; the authors of Ref.[2] do bachenko [44]. This approach was corrected by Biittiker
not possess a trademark for that expression. The real ques- [13], and widely explored, thereafter, particularly by Leav-
tion relates to experiments as discussed in Ref. [3] and to ens and Aers and by Biittiker. In this case we have a field
the material in Sec. 5 and Sec. 6 concerned with clocks. How which acts on the spin of the tunneling particle only while
is the traversal timeused? it is in the barrier. The extent of the spin changes during

barrier traversal are taken as a measure of the time spent
5. Clocks in the barrier. Rybachenko originally assumed, incorrectly,

that if the spin, the magnetic field, and the direction of tun-
When and why is traversal time interesting? Basically, neling were all perpendicular that only a spin precession

because we often oversimplify and treat a many-dimensional would occur, and the precession then would be proportional
or many-particle tunneling problem as a one-dimensional to the time spent in the barrier. Bfittiker realized that the
problem. We need to know whether this cheating is reason- component of the transmitted spin, in the direction of the
able; do the neglected degrees of freedom, coupled to the field, would also change.
emphasized direction of motion, have time to adjust to the Like all the other candidates for a clock, the Larmor clock
progress of the tunneling process?-For example, for an elec- has some minor blemishes. I do not suggest that they in-
tron tunneling through a barrier, between electrn)des, do the validate the validity of the Larmor clock, but only that they
image charges on the electrodes have time to adjust to the deserve further attention. Let me list these blemishes; they
motion of the tunneling electron [37- 39]? In a Josephson are probably of varying seriousness. First of all a spatially
junction circuit under constant current bias, tunneling out variable magnetic field requires apparatus for its generation.
of a metastable state, how much of a transmission line, con- Is it clear that this apparatus can be built in such a way as
nected across the junction, can respond while the tunneling to interact with the tunneling particle only through its mag-
occurs [3,40]? Such coupled degrees of freedom are not the netic field? The apparatus required for a time-dependent
only possible "clock" for the tunneling. We can also consider potential is described in Ref. [45]. It is customary in con-
tunneling in an intentionally modulated barrier [41,42] ceptual arguments to invoke arbitrary fields which are phys-
much as in Ref. [2], though 'je proposed experiments of ically possible, and the question raised here is, perhaps, un-
that type have not reached .ie developed state of those necessarily demanding.
associated with coupled degrees of freedom, adjusting to the The magnetic field in the barrier has an affect not only
progress of tunneling. In any case, wve emphasize that all on the spin, but also on the particle's spatial motion. This
these proposed or completed experiments have little relation effect has been measured [46], and analyzed [47]. The rec-
to the following of a vave packet peak or center of gra it) ognition that the spin has not onl) a precession required
through a barrier. modification of Rybachenko's original analysis; wouldn't it

The notion of comparing the speed of simultancous proL- be equally appropriate to allow for the simultaneous spatial
esses, as a clock for one of them, is deeply imbedded in and spin effects? Possibly, as suggested by both C. R. Leav-
physics. One version [43] seem particularly close to Ref. ens and M. Baittiker in private tommunILation, the differing
[2], and served as a model for that. Consider an atom in a dependence on powvers of the magnetl field, H, in the spin
crystal lattice wkhich can jump back and forth between two and spatial effets, permit us to w.onider them separatel).
positions. Now apply an oscillator) small stress designed to The redu.tion of transmission, due to the spatial effets is
favor one of the tuo positions. At frequencies slow .ompared of order H'. Spin preession is proportional to H, as is the
to the jump rate the atom will, essentiall), see a static stress spin polarization in the direction of H (for small H).
and the thermal equilibrium distribution between the two Finally, as pointed out b) Jonson [7]. Once w, go beyond
sites will apply. At frequenies high comparcd to the jump R)bac-henko's original ciioncous limitation to spin preces-
rate the atom cannot respond to the obcillator) stress. At bion, the interpretation is harder. Se-,tion D of Ref. [13]
intermediate stress frequencies the atomic adjustment %ill imokeb an analogy "ith two level systems to )eld a tra-
lag the stress, and the jump is a source of energy dissipation. versal time. Plausible, but not totally definitie.
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There are many alternative clocks possible that have not ertheless, I agree with Jonson [7] that Eq. (6.1) while rea-
yet been investigated in the literature. We can have a particle sonable, is not the only possible, quantity that meets the
beam.with a time-varying spin incident on a barrier which expectations that we have listed. If, instead of stressing bar-
transmits all the incident spin directions equally. Does the rier height dependence, we, stress dependence on incident
emerging beam faithfully and instantaneously replicate the energy, as suggested in Refs. [4], and [48] then the equiv-
incident beam? This version of a clock suffers from some of alent of Eq. (6.1) (with the a/a V replaced by 8/OE) becomes
the same blemishes as the-wave packet following proposals. a natural consequence of the reasoning provided in Refs.
Or, instead of varying the incident spin, we can modulate [4] and [48].
the incident energy. Instead, Refs. [4,48] invoke a beam with Earlier we pointed out that the traversal time of Ref. [2]
an oscillatory incident amplitude. Does the emergent beam does not necessarily correspond to the delay caused by the
faithfully and instantaneously replicate the incident beam? insertion of a barrier. Consider the case where we have a
As the modulation period-is reduced, by increasing the en- long region of uniform potential, with a barrier in its center,
ergy separation of the interfering arriving beams, where does and apply Eq. (6.1). The r.h.s. of Eq. (6.1) has the form
the faithful replication cease? Clearly this approach to tra- (a2 + b2)". For b > a this is approximated by b + a2/2b. If
versal time yields a result which depends on the energy de- the region of uniform potential is made sufficiently long,
pendence of the complex transmission coefficient. This ap- then the (MAO/8V) term in Eq. (6.1) dominates. The effects
proach also, of course, suffers some of the blemishes of wave of the barrier opacity manifested via DInT"1/aV become
packet following. The effects of the Lorentz force, due to a unimportant, and do not give us an additive contribution
magnetic field limited to the barrier, providing a spatial to the total TT of Eq. (6.1). On the other hand any terms due
deflection during barrier traversal, offers another possible to the barrier, related to wave function phase changes, do
clock. simply add to the MA4/OV contribution arising from prop-

agation through the remaining long region. Thus, if we ac-

6. Energy Dependent Transmission vs. Barrier Height cept Eq. (6.1), it is natural that wave packet followers, con-

Dependence cerned with the asymptotic behavior far from the barrier
(e.g. Ref. [49]) do not see the results of Ref. [2], but see

The approach of Ref. [2] invoked barrier height modu- only a phase related term.
lation; the traversal time depends on the barrier height de- As already stated in Sec. 5, instead of using the depend-
pendence of the complex transmission coefficient. At inci- ence of the transmission coefficient on barrier height, we can
dent energies way above a smooth barrier, where the WBK invoke the energy dependence. If we modulate the potential
approximation applies, there is complete transmission, along the whole axis, then, whether we modulate energy or
There, it is only the dependence of the phase of the trans- potential is irrelevant. That, however, was not the intent of
mission coefficient which counts, giving a result which agrees Ref. [2], which only invoked a potential change limited to
with the usual notion that Ow/Ok, with hk a local momen- the barrier. Leavens and Aers [16,50], have emphasized the
tum, describes the particle's velocity. For incident energies distinction between energy dependence and barrier height
below the barrier peak, and for opaque square barriers, or dependence. See, for example, Figs. 3 and 4 in Ref. [16].
opaque barriers to which the WKB approximation applies, This point is echoed by Biittiker [6]. These investigators
it is primarily the magnitude of the transmission coefficient are, of course, in a literal sense, correct. But the distinction
that matters. The effective local crossing velocity is then does not really seem as serious as maintained in Refs.

w/0OK with hK the magnitude of a local imaginary momen- [6, 16, 50] which stress the behavior at very low incident
tum. At intermediate values of energy, or for more compli- energies. At low incident energies, with a long incident wave-
cated potentials, e.g. as in resonant tunnelling, both mag- length, the matching at the barrier boundaries becomes im-
nitude and phase may have a comparable barrier height portant; the energy dependence of the transmission coeffi-
dependence. A general result for the traversal time was pro- cient is not dominated by the exponential decay in the bar-
posed in Ref. [13]. In terms of the transmission amplitude ier. As a result the energy dependence of the transmission
T"2 eI a , where T is the transmission probability and A0 is coefficient diverges at low energies, whereas the derivative
the phase change in transmission through the barrier, the with respect to barrier height decreases monotonically as
traversal time can be expressed in the form [see Eq. (2.18c) the incident energy is decreased. That, however, is the be-
of Ref. [13] and Eq. (6.1) of Ref. [16]]. havior for a given value of barrier length. For longer barriers

the terms due to the exponential decay in the barrier be-
rTx = h[(Oln T~r/O V)2 + (8Ap/8V) 2 ]' . (6.1) come, relatively, more important. As a result, the energy

range, in which the difference between energy dependence
It is the sensitihit) of the transmission probability as %ell and barrier height dependence is important, becomes
as that of the phase, with respect to a small change in the smaller.
barrier height V, that counts. Which is the more significant measure of traversal time?

Clearly, Eq. (6.1) has the -.orre,.t limiting behavior vhen That resultingfrom the energ) derivati c of the transmission
only one of the two r.h.s. terms Is present. It gives a traersal koeffiient, or that resulting from the barrier height 'aria-
time which is real and measures the over-all dependen.e of tion? The derivative %ith rcbpe.t to intident eneig) results
the complex transmission %.oeffiient on barrier height. Ncv - from argumentb ,.ocl) akin to folk, % Ing wavc pa,.kctb, and
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shares-some of those problems. It is more sturdy, however, sion. In Ref. [28], for example, one of Stevens's cases deals with a
allowing us to avoidthe concern with peaks and centers of pulse which'has just arrived at a barrier. Wequote from Ref. 128]:

gravity. Changes in transmission, as we change energy, are Then just inside the barrier we assume that., bas~been zero up
measurable. in contrast, the barrier height derivative arises until t = 0 and now it begins to oscillate with a definite frequency

from the introduction of a physical "clock". Despite some wo. That is, we require a solution of our equation which describes

preference.for~ barrier height modulation, this is not neces- propagation in the positive x-direction (which is in the barrier)
and satisfies

sarily the most settled question, and it remains a murky
corner of the subject. We will discuss it, here, in some more w( 0t)= 'O. fort < 0
detail, without necessarily settling it. ( e- ' fort > 0.

The variation of transmission coefficient with energy has
the advantage that it is clearly defined. By contrast, varying
the barrier height is an ambiguous operation, except perhaps 1 do)
for the rectangular barrier. In that case, with a uniform Jni d(O - o)
potential in the barrier, the obvious interpretation is to in-
voke a simple modulation of the barrier height. In the case taken along the line o) = + oo + i& to - oo + ic satisfies the
of a smoothly varying V(x), however, it is not equally clear initial condition, ...
what modulation 8V(x) should be chosen. Note, inciden-tally, that some support for the choice of a t V independent Stevens then goes on to take a superposition of solutions which at

the left end of the barrier correspond to the above contour integral.
of x, in the region of interest, is provided by the case of a Note, however, that if the incident wave from the far left, just to
periodic potential. In that case, within an allowed band; the left of the barrier, behaves as described in the above equations
Oc/Ok, with k the Floquet wave number, is well established for W(0,t), then the combination of incident and reflected waves will

as a physical velocity. We get that result (but complicated differ. And it is this combination which has to be matched just to
the right of the barrier; it is not just the incident wave which needs

by boundary matching effects) if we take 8 V independent of to be matched. Stevens, in correspondence, indicates that he is really
x. A non-uniform 8V(x), on the other hand, will produce analyzing the case where the combination of incident and reflected
interband transitions which are hard to relate to the ex- wave vanishes for t < 0 and oscillates as el'O for t > 0. In that case
pected result. his analysis is correct, but its relationship to the rest of the papers

The distinction between energy variation and potential discussed here becomes more obscure.
In a subsequent example, Stevens has a barrier to the right of

height variation is, of course, not all that great. A variation x = 0, extending to x = or. As initial condition he assumes that at
in the barrier height can always be represented (in the small xO, where .x <0, the disturbance is zero until t= 0, when it becomes
modulation linear approximation limit) as a sum over.spa- e-U°I Now, Stevens finds a superposition of plane waves, coming

from the left, which satisfies this requirement. Let us denote thistiaily localized potential oscillations. A t each location x, w v u ci n b k 1 0 n t e p e e c ft e b ri r wwave function by SA(k)ei lkx -'t). In the presence of the barrier we
along the barrier, we have a potential modulation limited will have a set of cigenstates, W'k(x), which include reflected waves
to the immediate vicinity of x. The overall effect of a smooth and have an evanescent behavior in the barrier. Let us choose the
potential variation, 6 V(x), all along the barrier, is the sum normalization of WA (x) such that the incident portion of the wave,
of such localized effects. At each localized potential oscil- coming from the left, is etc -'(k i. Now Stevens chooses

lation, with an unperturbed wave function at energy E0, we ,(xt) =SA(k',(x)e'"' (AI)
generate "sidebands" at E0 ± ho. These, then, propagate
away from their point of origin according to the unmodu- as his total solution, which clearly obeys the Schr6dinger equation,
lated- potential. In the case of a time modulated incident along the whole k-axis. But, unfortunately, it is not clear how the
wave function, the terms at different energies are already total wave function, including incident plus reflected waves, behaves

present in the incident wave; in the modulated barrier ease at x0 with time. Is it clear that Eq. (A.) gives us a V, which for t < 0
vanishes in the barrier and has a vanishing reflected wave contri-

they are generated all along the barrier. In many cases, that bution?
will not result in a serious qualitative distinction. In the case In a third case Stevens assumes that at t = 0 the wave function
of a modulated incident wave, of course, any energy sensi- is given by
tivity in the matching procedure at the turning point will
contribute. That is the reason for the distinction between p(x,0) = exp(ix o) forx > xO <0
barrier height dependence and energy dependence stressed f .
in Refs. 16,16] and [50], and already discussed. where Ao is the left of the barrier. Eq. (A.2) invokes Stevens's no-

I am indebted to stimulating interaction with G. Acts, M. Jonson, tation and units, where the incident wave number is expressed in

and K. W. H. Stevens, even if we did not reach complete agreement. terms of the square root of the incident energy. Then, once again,

The interactions with M. Biittiker and C. R. Leavens have been Stevens chooses a superposition of exact solutions (in the presence

totally critical to the development of my vews, but once again do of the barrier) whose incident wave portions, considered by them-

not reflect a complete overlap in taste. selves at t = 0, add up to give (A.2). But does the total superposition
of the correct eigenstates also add up to yield (A.2)? Why should
they? To continue in a little more detail (x.t) can be represented

Appendix as a sum over a set of Hamiltonian eigenstates That holds whether
we take tp(x,0) as in Eq. (A.2), or whether we take tp(x,0) to be

Stevens presents bevetal related ,nalyses in Refs. [27 - 29], and exp(L.v) only bctve.n two points. , and k,, and .anibhing out-
we will exemplify out diffiuttics, and not di%.ubs all of St,.wns side of that inte[val. (W; ma) want to takc this lattci ,houi.c, sug-
%.ases separately. We will use Ref. [28] ab the basis for oui dib.,- g.tied in worespunden" by Stecns, to avoid ,ave fntmions Cx-
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tending-to infinity).Ifthebasis functions are Ok(x) then the relative [17] C. R.Leavens, Solid State Commun. 74, 923 (1990).
.eight of-ok in the expansion of W is-given-by.Jqk*V(x,0)dx. First [18]:R. Landauer and M. Biittiker, Phys. Rev. B36, 6255 (1987).
of all, let.4k be the-planewave states over the whole x-axis. That [19] ,R. P. Feynman and A. R. Hibbs, Quantum Mechanics and
leadstothe iesults given by Stevens on pg. 3651 of Ref. [28]. Now Path Integrals, McGraw-Hill, New York 1965.
consider a potential which is infinite for x > 0, then the eigenstates [20] A. P. Jauho and M. Jonson, J. Phys.: Condens. Matter 1, 9027
will be (1989).

[21] H. DeRaedt, N. Garcia, and J. Huyghebaert, Solid State Com-
uk,= 2i sinkx, = elkx - e - jkx. (A.3) mun. 76, 847 (1990).

[22] R. Landauer in: Analogies in Optics and Micro Electronics,
'Now expand-W(x,0) in- terms of the Uk. Stevens asserts that the p. 243, eds. W. van Haeringen and D. Lenstra, Kluwer Aca-
,expansion in terms of the~uA- is trivially given by the expansion in demic, The Netherlands 1990.
terms of the Ok. That requires [23] R. Landauer, Physica D 38, 226 (1989),

[24] A. Peres.iAm. J. Phys. 48, 552 (1980).

I O ip(x,0)dx = utW(x,O)dx. (A.4) [25] C. R. Lavens, Solid State Commun. 76, 253 (1990).
C C[26] T. P. jOillcr, T. D.-Clark, R. J. Prance, and H. Prance, Euro-

phys:jLett. 12, 1 (1990).

(I ignore possible normalization questions, arising from the fact that [27] K. W. H. Stevens, Eur. J. Phys. 1, 98 (1980).

the uk are nonvanishing only in the left half-axis. Any correction [28] K. W.H. Stevens, J. Phys. C: Solid State Phys. 16, 3649 (1983).
due to such questions will be manifested by a~factor independent [29] C. L. Foden,K. W. H. Stevens, J. Phys. Condens. Matter 2,
of the value of k). The two integrals in Eq. (A.4) can only be equal 5179 (1990).
if the reflected wave, given by the final r.h.s. term of Eq. (A.3), makes [30] A. P. Jauho and M. Jonson, Superlattices Microstruct. 6,303

no contribution to the r.h.s. integral in Eq. (A.4). And that is not (1989).
in agreement with the results of elementary integration, for almost [31] D. Sokolovski, L. M. Baskin, Phys. Rev. A 36, 4604 (1987).
all k. Note that the ratio between the two sides of Eq. (A.4) depends [32] D. Sokolovski, P. Hiinggi, Europhys. Lett. 7, 7 (1988).
on k, and cannot be offset by any possibly neglected normalization [33] C. R. Leavens and G. C. Aers, Solid State Commun. 63,1107
questions. Thus Stevens is using incorrect expansion coefficients, (1987).
multiplying correct eigenfunctions of the Schr~dinger equation. [34] C, R. Leavens and G. C. Aers, Solid State Commun. 67, 1135

In correspondence Stevens has c6untered ni, objections to his (1988).
"third case", discussed in the preceding paragraph. Stevens asserts [35] E. Pollak and W. H. Miller, Phys. Rev, Lett. 53, 115 (1984).

that the contribution of the e-' ' terms in Eq. (A.3), after using his [36] E. Pollak, J. Chem. Phys. 83' 111 (1985).
weighting, derived from the l.h.s. of Eq. (AA), and integrating over [37] M. Jonson, Solid State Connun, 33, 743 (1980).

all k, vanishes at t = 0, and for x < 0. Therefore, the initial condi- [38] P, Gu6ret, et al. Appl. Phys. Lett. 53, 1617 (1988).
tions are satisfied, on the left hand side of the x-axis. And, clearly [39] P. Gu6ret, et al. Solid State Commun. 68, 977 (1988).
he has a solution of the Schrfdinger equation. [40] D. Esteve, J. M. Martinis, C. Urbina; E. Turlot, M. H. Dc-

voret, P. Grabert, and S. Linkwit, Phys. Scr. T29, 121 (1989).
[41] H. Hiibner, Optik 64,113 (1983),
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The Role of Barrier Fluctuations in the Tunneling Problem
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I. V. Kurchatov Institute of Atomic Energy, 123182 Moscow, USSR

Barrier Fluctuations / Quantum Mechanics / Tunneling
Interaction of a tunneling particle with fluctuations of the barrier induced by phonon or electron excitations
is analyzed. Special role, ofnonadiabatic excitations with the energy smaller than the reciprocal~time a
particle spends under the barrier is discussed. In an insulator the interaction with barrier fluctuations can
play adominant role leading to qualitatively alteration of the pattein of the quantum diffusion. At that,
the increase of the tunneling transition amplitude (coherent bandwidth) instead of the polaronic narrowing
and significant change of the temperature dependence of incoherent tunneling motion take place. Analysis
of recent experimental results on the quantum diffusion of muoniuin in KCI crystal revealing the decisive
role of the-barrier fluctuations is given. - The infrared divergence accompanying the rescattering of the
electron-hole excitations near the Fermi-surface causes the increase of the interaction with the barrier
fluctuations in a metal. Rigorous analysis for a two-well system with a completely arbitrary interaction.
of the electrons with a tunneling particle is carried out. It shows that there are'no parameter values for
which the interaction with barrier fluctuations overweight the intrawell interaction though the inelastic
transition rate sharply enhances. The general problem of-the validity of substitution of a phonon beat

bath for an electron one is discussed.

1. Introduction a specific situation. As it has been established earlier [4],

In an analysis of the tunneling of particles in a two-well the tunneling particle is actually scattered only by nonadi-
potential or in a regular crystal, there are typically two abatic electrea excitations lying within the energy interval
mechanisms for interaction with excitations of the medium, with the width wo in the vicinity of the Fermi level (co0 being
The first is intrawell interaction-which leads to a polaron the inverse time of the~particle passage under the barrier).
effect and -which predetermines disruption of the coherent The small phase volume of- these excitations results in a
coupling between wells or dynamic destruction of a band. limited scale of the barrier fluctuations. If we neglect the
At higher temperatures this mechanism leads to incoherent electron rescattering bythe particle, the probability WH of
transitions with "shaking" of the polaron "cloud". The in- the tunneling transition induced by the barrier fluctuations
trawell interaction does not depend on the overlap integral, at low T < o0 is small over the parameter

The second'mechanism involves fluctuations of the barrier
resulting. from- the interaction with electron or phonon ex- F (T, <) (1citations. The majority of works treating the tunneling mo- L o J (
tion of, particles in the medium do not take into consider-
ation this mechanism. However,,there are no grounds for as compared with the transition probability in conservation
that in the general case. As long as me'the early work [1] it of only the intrawell interaction. Here is the asymmetry
was shown that the interaction with tht. barrier fluctuations of the neighboring wells. (It is assumed that < coo).
can qualitatively change the pattern (,f quantum diffusion However, in taking into account the rescattering of elec-
in the medium. First of all, this is due to the so called effect trons, the well-known infrared divergence sharply enhances
of fluctuational barrier preparation. In an insulator, with W, This circumstance was originally pointed out by Kondo
taking into account the interaction with phonons, an effec- [5]. Zawadowski et al. [6- 8] undertook a detailed analysis
tive reduction of the barrier for extreme path of the particle of this problem, using a multicomponent renormalization-
under-barrier motion corresponds to this effect. As a result, group method for the partitiun function of the s)stem. The)
there arises a considerable increase of the tunneling transi- found a signilicant increase in the role played by this mech-
tion amplitude and, instead of the polaron narrowing, the anism during tunneling in a metal. However the question of
interaction with phonons may cause an increase in the co- whether the second mechanism can become more important
herent bandw~idth. Simultaneousl), the tempefature depend- than the first one in an actual tunneling problem remained
ence of the quantum diffusion coefficient is also changed, open.
including the region of exponential increase of D(T) with In addition to ever)thing else, this problem has one im-
rising T. portant aspect: The overwhelming majority of the studies

Below we shall followv a vivid manifestation of the role of the tunneling of a heav) particle in a metal hae used the
played by the interaction with the barrier flu ,tuations in the .oncept that the ele aronic and phonon thermal baths are
insulator, by using experiments on the quantum diffusion of equivalent and phonon bath has been used in the akula-
muonium in KCI crystal [2], [3] as example. tions (see, e.g., the review [91 . In the case of phonons, how-

In considering the barrier fluctuations relevant to the in- ever, there is no infiared enhanmement daring the res ,atter-
teraction with the conduction electrons in a metal, we face ing of cxwtations, so the inequalit) (l.1) makes it possible

Ber. Bunsenges. A. Chem. 95 1991, No. 3 C, ICH Verlay yeul;d.hQt mnbH, Jf-6940 Ifinkum, 1991 4JQU-Y0t2191,UJO3J-4I1 .S JJQ.251O
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to. ignore, fluctuations of the-barrier. In. i firs of the Widely potential relief in a crystal the frequencies oo and co are-close
usedispinHamiltonian, the implicationhere is that thereis by-the magnitude and further we will not distinguisl'-e-
no termarepresenting an interaction with excitations of the tween them.
,medium which is'proportional to the-rnatrix or. The ques- Taking into-account, (2.1) and the-evident relationr- >
tion .of. the role of'the inelastic processes associated with Jo, one immediately obtains the inequality
fluctu;tions of the barrier is thus related to the general ques-
tiobs-bf whether-it-is Valid-to replace-the electron bath'by o00T > 1 (2.2)
the phonon bath.

This paper contains the results [10] of the direct solution During the long lifetime z a many-particle wave function
of, the kinetic problem while incorporating the interaction ip)(r, R) in a- well i, incorporating all virtual excitations with
with barrier- fluctuations, for a completely arbitrary inter- c > -, is formed. The solution of the adiabatic problem
action of-the-elections with the tunneling particle. It turns has a crucial meaning for the structure of this wa function
out to be possible to find the explicit relationship between and it's evolution in a process of tunneling.. As was shown
the ,renormalized amplitude for a tunneling transition and in Ref, [.4] in this case the correct results could be obtained
the probability for hopping between wells, on the one hand, only if one takes into consideration the intrawell virtual
and the scattering phase. shifts, on the other. These phase excitations of a particle. The analysis leads to a natural
shifts are actual physical parameters which characterize the distinction between "fast" and "slow" excitations of the me-
interaction. The primary of the analysis below is the rigorous dium. The fast excitations with frequencies s > 0 adjust
proof that there are no parameter values for which the sec- adiabatically to the position of the moving particle both in
ond mechanism outweighs the first. The proof is presented the well and under the barrier. They form the screening and
for a two-well Hamiltonian of a general type. thereby, give rise to a renormalization of the potential relief,

The approach used in this paper is based on a direct U(R), and to a slight extent the particle mass. On the con-
determination of the overlap integral of the many-particle trary, the slow excitations with a < coo do not follow the
intrawell wave functions. This method allows one to take particle and the modified wave function of the medium
into consideration thebarrier fluctuations in a natural way which corresponds to these excitations turns out.to be ori-
and to single out coherent and incoherent tunneling inde- ented toward the center of the potential well. These exci-
pendently. This makes it possible to proceed simply from tations have the decisive effect on the tunneling. The inter-
the results for the two-well system to a crystal in order to action with them predetermines the appearance of the po-
solve the quantum diffusion problem. laron effect and due to (2.1) the entire diffusion kinetics at

low temperatures. In forming this nonadiabatic-part of the
2. Adiabatic Problem wave function, the energy interval of slow-excitations turns

out to be truncated r,)t only at the top but also at the
In analyzing the tunneling motion of heavy particles in bottom on the scale of T-'. This is connected with the fi-

the crystal, only the under-barrier motion betwe, n two niteness of the particle lifetime in an individual well. In virtue
equivalent positions in the nearest unit cells practically al- of this, the admixture of states with a < t - ' fails to be
ways turns out to be significant. In this case, the problem formed.
of particle motion in the two-well potential at an arbitrary In a metal the spectrum of electronic excitations extends
interaction with excitations of the medium is isomorphic for up to the energy co which, in the order of magnitude, is equal
the description of the elementary act. The solution of the to the Fermi energy &F or the bandwidth. The following
two-well problem is sufficient both for the description of the inequality is always characteristic of the heavy particle tun-
coherent motion of particles in the crystal and for the in- neling
coherent motion, when the phase memory is lost at each
translational step. (00 << Co (2.3)

Let's consider the tunneling between two wells, the lower
levels of which are separated by an amount , and assume This means that the small phase volume corresponds to the
that the tunheling amplitude A0, temperature T and are nonadibatic electronic excitations. In spite of the above, the
small in comparison with the distance co between energy part played by these excitations turns out to be very signif-
levels in an individual well icant in virtue of the well-known infrared divergence spec-

ified by the electron-hole pairs with the energy close to zero
A0, , T < o . (2.1) (see, e.g., Ref. [11,12]).

During interaction with phonon a different pattern takes
At the same time, the ratio between J0, , and T can be place. If the mass of a tunneling particle is relatively small,
arbitrary. The condition (2.1) allows us to ignore activation then wL ..> 6, where is now of the order of the Debye
processes and to assume that the transitions occurs only temperature Oe. In this ,ase the whole phonon spectrum
through the lowest level. turns out to be nonadiabatic. In the opposite limiting case

Two time scale are charateristic of the problem. the life- of a heav) particle tunneling in a light matrix, the (z -', j,)
time of the particle in a well t and the time w,, ' spent b) interval turns out to be nonadiabatic, as in the case of elec-
the particle under the barrier. For a commun non-exotic, tion. However, in actual crystals the density of phonon ex-
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citationsgoes to 0 as a - 0, which removes the infrared It follows from (2.8) and'the second equation in (2.7) that in
divergenceand the phase volume smallness is.not compen- shaping the wave function 02 the excitations effectively see
sated-for. the particle positioned at the center of the potential well:

In a sense, the particle andadiabatic excitations which
have ,adjusted to it form a real physical entity the under- P1'l(r) = 4_(r, R,).
barrier motion of which as a whole one has to study. There-
fore, in general, the problem reduces to one of studing a Substituting (2.6) into (2.5) we find
Hamiltonian which describes the motion of such a "particle"
in a renormalized potential U(R) with a slightly renormal- M - ()(r)lJ(r)I2)(r)>; (2.9)
ized mass M. The interaction with the medium contains only J(r) =(_S1(Rr) H'(R) lp (R,r)>.
slow excitations V(r,.R) withenergies e < w0.

In the renormalized potential'relief:we single out nonde-
caying individual well U0 (R), extending its edges in the The expression for J(r) reflects the dependence of the tran-

usual way. If the Hamiltonian of a particle in such a well is sition tunneling amplitude on the distortions of the barrier

deroted by M ), the geniral Hamiltonian of the one-well which result from the interaction with fluctuations in the

problem canlie written in the form slow excitations subsystem. Interestingly, the situation
which arises is precisely the opposite of the conventional

- = (R), (2.4) adiabatic case; during the time it takes the particle to pass
H(r) + V(r, R), 2ML = + U( 2 through the barrier the electron or phonon fluctuations re-

main static.
where H,,(r) is the Hamiltonian of the excitation subsystem. The expression for J(r) can be written in the form
Le,"us use H'(R) to denote the difference between the true
potential reliefand the chosen non-decaying well U(')(R). J(r) = Aoe - Br (2.10)
Then, for the matrix element of the transition from one well
to the other we have where B(r) is given by

(2.5) B = S[2M(U + V)]'tdR - S [2MU]"'2 dR.

where i(r,R) arc-the eigenfunctions of the Hamiltonian
(2.4). Noting that the scale of the changes in the barrier are small

Under the condition (2.1) the knowledge of the matrix in comparison with its height, one can expan 'this expres-
elements (2.5), both nondiagonal and diagonal in the state sion
of-the medium a, fully determines the problem of tunneling
'with interaction with the medium. This also applies to the B " dR V(r, R o)
problem of a coherent transition with the formation of band J(R) COO
(a =fP), if we are dealing with a crystal.

The fact that only the interaction with slow excitations
appears in (2.4) predetermines the possibility of seeking the Here 9(R) is the velocity of the particle in the upturn barrier
eigenstates of this Hamiltonian in the frame of reciprocal Substituting (2.10) into (2.9), we finally find
adiabatic approximation.

ip )(r, R) = pt (R,r) 0.0)(r), (2.6) M.# = Jo <0( "(r)je-'1 y(r)>. (2.12)

o (p) aThe structure of expressions (2.9), (2.10), (2.12) reflects theequations fact that the effective reduction of the barrier due to the
fluctuations corresponds to the optimal path of tunneling.

[Hp) + V(#',R)]qTV(Rr)= 4) (r) Ap(Rr) (2.7) This effect called "fluctuational barrier preparation" was
+considered for the first in Ref. [1] for the tunneling problem

S+E (in interaction with phonons.

Now the particle is moving in the distorted potential relief, In the case of interaction with electrons the small phase
created by slow excitations. volume of the energy interval of nonadiabatic excitations,

The scale of displacement of the particle located at the which determines B (2.11), results in the estimate B < 1. In
lowest level in the well from the equilibrium position R, is interaction with phonons, if c, > Or, there are no principal
small, as compared with the inter atomic distance "a". There- limitations on the magnitude of the B value.
fore, The matrix element (2.12) is defined in terms of wave

=~ +(functions which are eigenfunctions of different Hamiltoni-
d - + <( V(r, R) I j(R~r1> ans. As alvays in such situations, it is thus convenient to
2 (2.8) introduce a unitary operator A, which relates the represen-

VQ R,). tations of the functions qPY) and (PY. We make use of the
circumstance that the translational symmetry of the problem
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makes it possible to, retain the same-classification at the to flag this circumstance). It is this circumstance which al-
'displacement of a-particle. We can then write' lows-us to go to the latter equality in (3.2), since the spaces

{s} and {s'} do not overlap, and all the terms in the expo-
= A, =_ Alp> (2.13) nential function commute with each other.

We substitute expansion (3.2) into the Schr6dinger equa-
and, correspondingly, tion

Mw = Ao (d l'e-AlfP>. (2.14) [H, +-AV'P O) = Ep/ I,  (3.3)

Here the o and P subscripts belong to-the eigenstates which [A- (HI + A V)A] pfl = Eft b0 .

are thesolutions of the second equation in (2.7) for i = I
with allowance for (2.8), or to the eigenfunctions of the Ham- Since the effect of the operatorA (aiid A ) reduces to one
iltonian of-simply creating independent electron-hole pairs, there is

no difficulty in finding an explicit form of Eq. (3.3). A so-
Yj = H,. + V(r ,R)., lution can be written in the form

The amplitude dc of the coherent transition between the, E, = E° - E. A V.,,C,r, (3.4)
wells, which is responsible for the formation of a band in a $$'

crystal, is determined by the relation
C".:= -.._ .AV,,-(l-n,)AV -. Cp,.

4c= 4oKole'Ala>='Sp(ee8 A), (2.15) (3.5)

where e is the equilibrium density matrix of the excitations. + E n,,A Va-, - Cp,- Z (1 -n,) n, A Vp p' C,p Cps,1.
After the dynamic destruction of the coherent band with P,

increasing temperature [13,14], the tunneling motion of the
particle acquires an incoherent character. In this case the It can be concluded from the form of (3.2) that the coef-
site representation is adequate for the problem and the prob- ficients C,,. mean the probability amplitude for finding in
ability of a transition to the next well can be represented in cie state witha single electron-hole pair, at aIr it is thus

the following formOPstt ihasnlelcrnhlpara+aIo>.tishu
no accident that relations (3.5), (3.4) are the usual equations

0of the perturbation theory. A state with a single pair can be
W 2= ,o S dte* Sp{A+(t)e-B,)e-Bf()A(O)}. (2.16) obtained through direct creation from state lI>, through

-. rescattering of an electron or a hole, or through annihilation
of an extraneous pair from a state with two electron-hole

3. Electron Polaron Operator pairs. These possibilities correspond to the order of the
To study the role of the barrier fluctuations, we begin terms in (3.5).

from the case of interaction with electrons. Let us expand A Vk,' in some complete system of function
The Hamiltonian of the system for the case in which the defined on a unit sphere, separately for the argument k/k

particle is in well 2 can be written in the form and k'/k'. One can easily show that th Hamiltonian (3.1)
can be put in a diagonal form in the ge,,t al case for k and

H2 = H, + AV= Z e, aA, a F, AVla'A a,,; k near the Fermi surface. Then
Ao aA'u(3.1)

AyVk, = VA, (I -exp(i(k-k')(RI -R 2)). AVAk = AV(c,,').29(k).Q*(k'); (3.6)
I

We seek the wave function k)P in (2.13) as an expansion in
states of the Hamiltonian H. 'IY) differs from P) in an To make the exposition more transparew we assume sep-
arbitrary number of electron-hole pairs. We make use of the arability of A V(a, ')
fact that the amplitude for the creation of two pairs breaks
up into a product of amplitudes with a macroscopic accu- AV(s,s') = AV(a),'(a'), (3.7)
racy. The operator A can then be written as

where aj(&) is a smooth function of the energy, and aj(O)
a1 Sa 1.A =Sexp{ E C. a" a.}=fl (1-C.,,a,a,), (3.2) 1

- , = ,, The solution of Eq. (3.5) can then be sought in the form

where S is the normalization factor; s =_ k, a. The iodex s C- = , £2, (k). S2(k').C(,&');
in the product (3.2) specifies exclusively vacant single-par- (3.8)
title states in Ia>, while s' specifies exclusively occupied (, C)  AV(, C')
states (the o on the summation and product signs is intended C = - ' (a)ij1(c').
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After averaging over angles, the terms with different j split The normalizafiofi factor S in (3.2) is equal to the overlap
up, and we find equations for j andqj. integral-( b)l~)>. Its value can be calculated from the re-

lation K<cIA+AIj> = 1. At T = 0

~(s~1 ~ i~c't~(e (39) S= exp{ b-~ } b = 62(3.15)

q(e)-. 1 - AVj ds'a(e')(- n e' j(e ) I
C'-C

This result was known from the, previous studies [12], [16].
()angystemhaniss of oleron ntale atin. ihe- In the tunneling problem the cutoff of the logarithmic di-tangle the mechanisms of electron and hole scattering. The vrec n(A)i once ihafnt ieieo h

systm hs alatnt ymmtry howver whch llos u to vergence in (1:15) is connected with a finite lifetime of thesystem has a latent symmetry, however, which allows us to particle in a well and ei,, .~ r-

convert it into a linear system of equations.

) 2 4. Effect of Barrier Fluctuations on a Tunneling in a Metal
M)= I - OcAl'j ic J()c

X C =(3.10) The results of the preceding section allow us to determine

a(y)I12(l .-n (y)) the effect of the barrier fluctuations on coherent and inco-
+ AVj v -n (y) Q (y) dy. herent tunneling processes. Retaining the first two terms in

the expansion of the exponential function in (2.15), we find

Here a (c) is the electron density of states, and n(c) is the
occupation number. It turns out that , and j are connected Ac A- ) + 'd0 Sp (Q B A) (4.1)
by the simple relation j(°) = -S.

Gj(e') Taking into account that Cmi = yd,, the self-consistent value
n g) = n (C')' (3.11) of Al°) is equal to (see, e.g., [9])

GI(c) + AJj Io~x) 2 Q(x)dx ,

ATo) Ao 0 )b ; (4.2)

where g1 = a (cF)A V is a dimensionless interaction constant.
This kind of equations is well-known in the theory of

singular integral equations and has an exact solution [15]. A is a known numerical factor for lattices of different types.
The equation of this type has been used extensively by No- According to (2.11) the expression for B can be written in
zieres and de Dominicis [12] for the problem of X-ray ab-
sorption in a metal, accompanied by the creation of an elec-
tron near CF. B = a Bk, aa'ak,. (4.3)

We are interested in the solution of (3.10) at c - 0. It k'a 0oo

acquires a particularly simple form. at T = 0
Let us expand BIA, with lvi, Ick'I < co < CF in the same

MC)A;t -j , 3= tan-'G() (3.12) system of functions j:

BkA' = E Bj,.. (k). 2O*.(k'). (4.4)
(Aj - 1). And, consequently,

The fact that all the terms in the argument of the expo-
C( AV,(CC). C' sin (3.13) nential function in the definition of the operator A in (3.2)

C-8 1 gj commute (this circumstance is the basic distinctive feature
of the method which was selected for constructing this op-

In these expressions 6j is the phase shift in scattering of an erator) means that the evaluation of the matrix elements will
electron at the Fermi surface in the potential AV. be a simple process. In the case at hand, using (4.4), we

At finite temperature, approximate expressions sufficient immediately find the following expression for the second
for all physical applications can be written in the form term in expression (4.1) at T = 0

0)0 Aj [ 1 d(0) 2 B1jj VA sin 6j 32 (CF)(C'e T A ... (3.14) J O)o 1g] (4.5)

A V(8,C8) (C', T).x [OP sin 6 (1- n)n,.dcdc'
(- (,' T)max I rgj - C-C'
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The value of this integral is determined at.the upper limits W" ; -(30/to0)2 gT. (4.11)
,f the integration, so the simple estimate With allowance for
(2.11) can be obtained Comparison of this expression with (4.8) leads to the ratio

JoSp(QBA) ;,, A°)o(eF)AVsin6. (4.6) W"/W' (2T/wo) 2 < 1. (4.12)

Using eA V ;< 1, we see, that the renormalization of 4, is In the generalcase it is required to evaluate the effective
not of fundamental importance. This result continues to matrix element !&- which corresponds to a transition from
hold at nonzero temperature T < co, since 8,8' - wo are well 2 to well 1, in a process accompanied by the creation
important in -integral, (4.5). It is easy to show that the cor- of a singi.'-Zlectron-hole pair:
rections from higher-order terms in the expansion of e-1
do not alter this result. !fp = S-' (lBA [i>. (4.13)

Thus, the infrared catastrophe near the Fermi surface has
no essential effect on the fluctuational preparation of the From the definition of the operator A, one can easily collect
barrier in th6 formation of c,. possible matrix elements which lead to the state a[> =

As shown in Ref. [13], the amplitude for a coherent tran- a+ a,. I P>:
sition begins to decay exponentially. even at temperature
b T Z dc. The under-barrier motion of the particle is now B B,. - . (1 -nk)BACks. +
accompanied by an excitation of the electron subsystem, and k k' (4.14)
it thereby becomes incoherent. Under these conditions the - (1- nk)nAk'BkCks.CA'.
transition probability is determined by(2.16). Ignoring first kk

the fluctuations of the barrier, one can transform (2.16) to(see e~., ef,[1718,"i Substituting expressions (3.8) and (4.4) into this equation,
(see, e~g., Ref. [17,18,4]1 we find

00

W' - °"Jo dte'eX(') (4g7) Aff (, a') = B j(a)t .(a'). (4.15)

xt)= 2b-[1 ( 2 ) +iin ] Using (3.14) and (3.11), we have finallyX~t = 2b Y (I - cos (yt)) coth v + i sin (yt) .

oY _ _ (00 '6'

-B.(c,c') ;t: B. ( t ) a', . (4.16)
An evalution of this integral leads to the expression
[19,20,4]

This expression demonstrates that there can be an ap-

W( 2L (T) T IF(1 + b + i-/2ATfl e~/ 2 r, (4.8) preciable increase in the amplitude for an incoherent tran-
+ T (1 + b) 1(1/2 + b) sition due to the fluctuations of the barrier when the res-

cattering of the electron and hole is taken into account. This
7o(T) = Ao(ItT/too)b, 92T = 2nbT. (4.9) circumstance was first pointed out by Kondo [5]. Zawa-

dowski et al. [6,7,8] undertook a detailed analysis of the
Consider the probability for the process in which the exci- renormalization of this amplitude. A result similar to (4.16)
tation of the electron system is coupled specifically with was first derived by a multicomponent renormalization-
fluctuations of the barrier, and begin with a perturbation group method [8] for the model with commutator
theory in B. We first ignore the rescattering of the electron-
hole pair created by the operator B. In this case the tran- [V(rR), V(r,R 2)] = 0.
sition probability is given by

The transition probability determined by the amplitude
W os IBf/oI2(1-n,)nr / is obviously given by expression (4.10), with B replaced

by/f
J dt expai(. + -)t-Z(t) (4.10)

= Xf, •1 w( +8'- -njne- F I
= I B,/ol (1 - n,)n,, W' ( + a- a,). L(T)I

S'.

The integral over dt in (4.10) is determined over time scales r " . ..- " dads'

1/(T,)max. We single out the constant part of (t), which L (a', T),J ' (4.17)
leads to renormalization of Ao by 3o(T); the remainder leads
to a 6-function vhich is smeared over a scale -. As a result %Nheref, = e- (k) B;,. We can estimate the relative order of
we find the simple estimate ( = 0) magnitude of W' even %ithout writing an explicit expression
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for ,W,The integral over de ana de'-is determined'at energies At the finite number of the 6,) phases, it, is convenient to
of the electron-hole. pairs of the order s - , (c , Y)%ay, (at transform- the elements of the determinant (4.21) to the form
energy transfer E > T, the probability V falls exponen- which-would contain phases only in the combination (e:2i6°)

tially, - e,E/'). Then immediately - 1).After that, the determinant-rank becomes finite. Direct
algebraic transformations of (4.21) make it possibleto reduce

2(0,0) -(4.18) 'it to the form

det En G' IEp+ Gp G + Z 6-- 0. (4.23)
0 = (OjR).., . = Oil- 6 1)/T (4.19) Gy - z 1

Thus, the pioblem of whether the barrier fluctuations in Here
a metal can become a leading channel of scattering depends
on-thepossibility for the parameter 0 to become larger than G, tan'O), z = tan 6. (4.24)
1. However, it will be shown below that- 0 is, nevertheless,
always smaller than 1 and the intrawell scattering remains The symmetry specified by the shift operator ePR, if we
to be the leading process. In this case, one should bear in choose R as a polar axis, predetermines the decay of the
mind that, taking into account the rescattering, the transi, determinant (4.21) into the product of determinants, each of
tion probability also contains a correction being linear in which is characterized by its own azimuthal quantum num-
B. However, this correction is determined only byj-diagonal ber m.
of the B operator, which display no enhancement (4.16). At If the potential V, is characterized by only one scattering
the same time, the small parameter appearing in this case phase 610), and, consequently, G(,,,, = Go 6,,,, then (4.23) is
contains the ratio ( , 7)ma/o/o only to the first power. reduced to a trivial equation

The bj phases which occur in expression (4.19) characterize
the scattering in the nonspherical potential created by the - (2j + z2  ton 10° G ;  [El, - ,,,l.,,,( 25

difference' V(rR 2) - V(rR). The scattering matrix S cor-
responding to these phases can be expressed in terms of the
S-matrices relevant to the scattering by the particle in- an Its solution has the form
individual well. Indeed, the outcoming wave Ooul being the p1 CE 1- tg 3T)
solution of the Schr6dinger equation for the Hamiltonian z = tan 6 = ± (4.26)
H(').is, on the one hand, conventional!;, connected with the :1/1 + E2,,, tg26t 4.6
outcoming part of the plane wave to'. o;t~%

Now, if the b parameter (3.15) is calculated, we immediately
Ru = 2 O have the result which was for the first time obtained by

Yamada [18,21].
while, on the other hand, through the 9 matrix it is related At R -+ Othe AV interaction (3.1) and, at the same time,
to the wave outcoming from the center at the point R, 3, tend to zero (the overlapping integral (3.15) should reduce
Nut ut to 1). Hence, it is possible to conclude that at small R's the
'RI R = =  T phase values should be determined by the tan - ' branch
Hence, it immediately follows that between -it/2 and n/2. From the viewpoint of the 0 pa-

rameter, the crucial problem is whether the solution (4.26)
SI= S2 St = eiPR St e- pR Si- ', (R = R2 - R1), (4.20) would be able to intersect the boundary 161 = n/2 at a

continuous variation of the R, (°) quantities. This would
(cf. [16]). In the latter equality we made use of-the trans- mean that at a certain point z would go to o. It follows
lational symmetry, p is the momentum operator. from the form of Eq. (4.26) that this could take place only

The eigenvalues of the S operator equal to e26'. The dif- under a simultaneous condition of tan501 = + 00; E1,0 , =
ficulty in their finding is attributed to the noncommutative 0. But these singular points are only the point of contact of
character of the S, and S2 matrices, since [VI, V2" # 0. the solution 6 to ± t/2 values. This immediately follows
Within the representation of standard spherical functions from the continuity of 6 as a function of 6(0 and R.
Y,(k/k), a -= (, in), where the S, matrix is diagonal, the Thus, we come to an important conclusion that, in the
eigenvalues are determined from the condition case of one scattering phase, 161 < t/2 (cf. [21,22]). From

this the restriction 0 _< I directly follows.
det Z E,,e - p 2 0Y E- e S = 0, (4.21) Let us now consider the case of an arbitrary number of

1 I phases 6(1) and find out the conditions under which the so-
lution for z goes to oo. To this aim, we rewrite (4.23) for the

where case of z = oo

( (k); E+ = E-i1. (4.22) detlZ E, , G+6 =0 (4.27)4no,
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We makeuse therepresentation of the:spherical functions (Rj) V 1/, C,,p(R) - V (5.2)

-.in the formi
Usually, in analyzing the tunneling in the medium, only

Y,. i1Olm e/1t, the one-phonon interaction in (5.1) is considered. However,
the' allowance for the two-phonon interaction has quite a

One can easily follow that the relations principal character. As shown in Ref. [14], only. in this case
= E' -(- E the tunneling motion in a crystal acquires a "viscous" or

E 1)"""ohmic" character of behavior. It is not accidental that the

take place. Let's introduce two complex matrices quantum diffusion in a regular crystal at low T is determined
precisely by the two-phonon interaction- [23,24]. We pre-

A. = I(-1)- 6& + iLft Gf; IB p = (1)t 5,p--iE +0 Gf serve only the two-phonon interaction in (5.1), since by tak-
ing into account the terms of a higher 'order we do -not

Their product is equal to the-matrix,the determinant D of introduce any qualitative changes. The results presented be-

which coincides with (4.27). Hence, low were obtained on the assumption that the two-phonon,-
interaction was a weak one and it is treated within the per-

D = det I IAi • detIlB ,. turbation theory.
Bearing this in mind, it becomes possible to represent the

Itfollows from the complexity of the matrices A and 3 polaron operator in the form [14]
that in:the general case it is required to satisfy at least two
independent conditions in order to have zero D. A = AZ A,. (5.3)

As a result, in the space of the {62)}, R parameters of
dimension d the singular points z = o form hypersurfaces Here A, is the conventional shift operator of normal oscil-
of the dimension d - 2; In the same way as in the case with lators
,one, scattering phase, this means that at the continuous var-
iation of the parameters the solutions bj do not cross the /

16j1 = t/2 value, and always remain on the tan- ' branch A, = exp b. - b . (5.4)
(-ir/2, it/2). Itis particularly evident in the space of three \o MI
parameters (,6), 6 R}. In this case the singular points form
lines and all the phase space points may be connected to In constructing A2 related to the two-phonon interaction,
the origin without crossing the singular lines, in- (5.1) only the terms of the scattering type b_,, bp and

Thus, we arrive at a general statement that, in the case of b-,i b, turns out to be significant.
thetunneling motion of the particle, the interaction with
,barrier fluctuations always remains weak as compared with { 1 c
the intrawell interaction, in spite of the enhancement due to A2 = exp - C -o+i b+ ba

the infrared singularity. 2 (5.5)
From the consideration presented, it is cleat that the fer- C* _ b b_1 (

mion and boson heat baths are, strictly speaking, not equiv- o- , - (OP - i/ J
alent. It is possible to ignore this fact only to the extent to
which all the contributions connected with the barrier fluc- It should be reminded that in (5.1), (5.4), (5.5) the sum-
tuations can be omitted. mation is taken over the nonadiabatic interval of phonon

excitations a), < Oo. In determining B (2.11), we preserve
5. Effect of Barrier Fluctuations on a Tunneling Transition only the barrier fluctuations stipulated by the one-phonon
in an Insulator interaction

Consider now the role of barrier fluctuations during tun-
neling motion in an insulator, when the interaction with I
phonons plays decisive role. Naturally, all the results of Sect. B =- Bcb° + B-.boo( . (5.6)

2, in particular, expressions (2.15) and (2.16) are presented 0

in-this case. The polaron operator A (2.13) is constructed
now on the interaction Here, b., b,+ are the operators of the secondary quanti-

zation, which correspond to the phonons of the lattice non-

AV = Z C(b. + b+-.) + 1 C p (b. + b _) (bp + b p) perturbed by the particle. They are connected with the op-
2 erators b,, b, in (5.4), which are determined at the phonon

states with the displaced centers of oscillators when the par-
C. = C.,(R 2) - C.(R,), C.# = C~f(R 2) - Caf(Rl). tide is in well 1, by the relations

(5.1,)

Here the subscript Ta = q,)., where q is the wave vector; bo = b - b -b
) is the phonon branch number. At co,, (o p 0 wo, coI
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We shall now calculate the coherent transition amplitude The Q2(T) frequency connected with the phase relaxation
:(2.15). By neglecting.the rescatterifig due to the two-phonon rate in the tunneling transition is determined by the ex-
processes,we have pressinfi [24,14]

Q(T = ic IC.q2N.1Ne o)-wl
JC = Jo <e' A> <A2>. (5.7) 12(T) = (t N(1 +3N)) (co -cop)

00exp(co/)

Here. <...> =_ Sp {o...}. 0 (exp(co/T)
The calculation of the first average value is performed

directly [1], where g(o) is the phonon density of states. The function
A(co) is the average at. o = cop = co over the phase volume

A. = g0 <,2>. 30(T) = A0 eg0 e- O(T)+G(T). (5.8) and branches of the phonon spectrum from IC,,pI2.
The condition 92r > 1, under which the coherent band

In this expression: break-down takes place, occurs in the region of low tem-
peratures T < el), where Zo differs still slightly from its

I ,value at T = 0. At that, there takes place a transition to
(T7) ' ----coth "" (5.9) the incoherent regime, which is described by the general

2 c \2T/; expression for the transition probability (2.16) with allow-
ance for (5.3)- (5.6). The straightforward calculation of (2.16)

is the conventional polaron factor; results in the relation [14] (see also [1])

W = {0r  dtexpjit - -- ln(cosh(nrt))

G-(-)- coth (5.10) -T

exp (t) + iT'(t)). (5.14)

is an exponent stipulated by the barrier fluctuations.
The B0 determines the barrier variation connected with

atoms shifts to the positions equal to a half-sum of the static Here
shifts appearing when the particle is in wells I and 2 W IC1 + INB2 1 cos(o.t).

= B + C. ) (5.11) 2 (5.15)

0 ((t) =2 C,,B _, sin(cot)

The B0 value is temperature-independent. 01 coccCoo sinh (2"T

At T - 0 the average (A2> --* l and the coherent am-
plitude and, correspondingly, the coherent bandwidth in the
crystal is determined by the A0(0) value. As seen from the At T < OD and restricted this expression is strongly
expression (5.8), there takes place a competition between the simplified and results in the form [25]
polaron effect and the fluctuational barrier preparation. The
ratio between (p and G is arbitrary in the general case, since 22o3 2 /T
the basic contributions made to (5.9) and (5.10) may be con- W ,2 + 922 1 - e- 2r (5.16)
nected with the shifts of different groups of atoms. If the
barrier fluctuations prevail, then, instead of the decrease, the At = 0, proceeding from this expression to the diffusion
one-phonon interaction causes the increase of A, and, in- coefficient, we have [24]
stead of the polaron narrowing, the bandwidth will grow
with rising temperature. It should be stressed that at wo > za2  0(5
eD the whole phonon spectrum takes part in the formation D(T) = ---T (5.17)
of G (or T), and the scale of these quantities may be appre-

ciable. On the contrary, in the case of a heavy particle tun- z is the number of equivalent wells with the same energy in
neling, when COo ,4 0 D, the part played by both the factors the nearest coordination sphere. This expression hold true
may be rather small. in a broader interval of temperatures and only the T > T-1

The (A2> value starts to drop drastically with rising tem- condition [24] is required. Thus, at low temperatures the
perature. Already at OD > T > T-1 the calculation of this quantum diffusion is determined by the two-phonon proc-
value, taking into account the explicit form of (5.5), brings esses. The one-phonon interaction, in particular that the
about the result [14] barrier fluctuations, is introduced through the renormalized

amplitude 2o (5.8). The transitions induced by this interac-
(A, > - I2. (5.12) tion constitute just a negligible correction to (5.17).
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However, the picture changes, when the condition T < latter. All that allows us to analyze the role of the interaction
eb ceases to hold true. In this case, the inelastic processes with the barrier fluctuations by comparing the theoretical
related to the barrier fluctuations and "shaking" of the po- and experimental results. Here we shall confine ourselves to
laron "cloud" start toplay a decisive role. In (5.14) the P(t) the results of the analysis for KCI (for details, see Ref. [28]).
,and T(t) functions are responsible for these processes. It At low temperature T < Tmn the diffusion coefficient is
follows from the form of expressions (5.15) that the under- determined by the expression (5.17), while the corresponding
barrier and intrawell interactions can, Io an equal extent, be lifetime in a cell has the value (h = 1)
dominant. At that, the character of the temperature de-
pendence will differ appreciably in both the cases. 2 8 4D(T)/ =. (6.1)

Here we present the expression for W (5.14), which cor-
responds to the region of high temperature, when it is pos-
sible to assume that P > 1. At a large scale of the barrier (coefficient 4 is a result of a numerical calculation for a
fluctuations or a large polaron effect such an inequality takes simple cubic structure). It is precisely r-' that was deter-
place already at relatively moderate temperature mined in Refs. [2,3]. Within the limit T-- 0 in (5.13) the

function ). (o) - wo 2) and, correspondingly,
O t fE T ( B)

2 T O T7+(2)

W" Je28.* 4(E+ y)Texp 1-7T EB 16(E+y)'' T (6.2)

Two additional powers of T appear in the case of particle
(5.18) tunneling between the absolutely equivalent sites. In the

Here NaCI structure the neighboring sites are not equivalent as
far as the interaction with phonons is considered and the

E 1-I;IC E (2) factor must be omitted.
4 OM (5.19) In Refs [2, 3] an appreciably weaker dependence was ob-

I o.IB.1I2  CIB-,, served, as compared with (6.2). As it has been found out
Y = ; =  [28], that is not a consequence of violation of the decisive4 o 0 role played by the two-phonon interaction but is due to the

The sum of two linear in T terms in the exponent has a necessity of taking into account the actual phonon spectrum

positive coefficient. Thus, the transition probability rises ex- of the crystal in (5.13). The calculations performed for KCI,

ponentially both due to the polaron effect and due to the allowing for the experimentally determined g((o) function

barrier fluctuations. However, the temperature dependence [29] and the simplest form the vertex of the two-phonon

is different in these two cases. If the polaron effect is decisive, interaction
we obtain the activation dependence which is well-known
within the small-radius polaron theory (see [26,27]). If the IP C12 = )2ph 0./OP (6.3)

interaction with the barrier fluctuations prevails, the law
changes. Now the exponent rises with temperature, follow- art shown in Fig. 1. At that, it was assumed that o const.
ing the linear law. From the formal point of view, at a suf- At T - 0 the inverse lifetime goes out into a constant value
ficiertly large value of the TIeD ratio the fluctuation mech- To- 2 22. (6.4)
anism will always play the key role.

Thus, we see that in the case of an insulator the interaction The transition from coherent regime (6.4) to incoherent one
of the tunneling particle with the barrier fluctuations can be The co n fr e co henterpolato forula
of cardinal importance. (6.1) could be described by the interpolation formula

6. Quantum Diffusion of Muonium in KCI Crystal rc= 1 + Q0 (6.5)

The recently published very interesting works [2,3] pres-
ent the results of investigation of the quantum diffusion of The limiting behavior of the experimental curves at low T
muonium in KCI and NaCI crystals. The discovery of the allowved j, to be determined independentl). It vvas obtained
diffusion coefficient increase by 2.5 + 3 orders of magnitude
with decreasing T, which supersede the exponential drop of A0 ,_ 0.13 K (KCI). (6.6)
D(T) is, surely, most impressive. It was for the first time
that within one experiment the low -tempernture mirease of Thus, only one fitting parameter ,..,pi ,Na used which con-
D(T) was observed on such a scale, as well as the passage trols the scale rather than temperature dependence of 92(T).
through the minimum and the under-barrier ,haracter of It is .lear from Fig. 1 that just after the minimum point
the motion at the high-temperature branch of the depend- the experimental and theoretital results are rather close. The
ence at T > T,.. The appearance of a small preexponential latter correspond to the dependence D(T) - T ", in ex-
factor, as compared with the oscillation frequency of a par- periment [2] D - T ". An analogous result was obtained
ticle in a well c - 101 s- 1, is a clear manifestation of the for NaCI.
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Low temperature behavior of the inverse lifetime in KCI. Experi- Temperature dependence of the inverse lifetime in KCI. Experi-
mental'point are from Refs. [2,3]. Fitting parameters for the the- mental point are from Refs. [2,3]. Fitting parameters for the the-
oretical curves are: ,2o = 0.13 K, ?.2ph = 0.11 oretical curve are: 20 = 0.13 K, )2ph = 0.11, ;R = 0.25

Considering the temperature region T > Trin. we conserve and, using the same g(o) function determine the value of
in (5.14) the one-phonon interaction only. After singling out G(T) (5.10) and W'(t) (5.15). The results of the calculation,
from (5.14) the two-phonon part (5.16), (5.17), (6.1) the ex- making use of only one fitting parameters 4, are presented
pression for T-' can be written in the form ( = 0) in Fig. 2. One can see that remarkable agreement takes place

between the experimental and theoretical results, including
4W - 4 2 J" dt (eY'()+i m(i - 1) (6.7) the position of the minimum, the scale of T at T Tmin and

-oo the whole high-temperature behavior of f - (T). The con-
trast between the both limiting cases is so pronounced that

The sum of (6.5) and (6.7) describe the actual lifetime in a there remains no doubt about the decisive role of the barrier
unit cell. fluctuations for the quantum diffusion of muonium in KCI.
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There are two characteristic energies for the proton in metals: the orbiting frequency within a site (hwo)
and the tunneling integral between neighbouring sites (A). Since typically 1100 is 1000 K and I less than
10 K, the temperature range defined by ho > kT > A is experimentally accessible. This is peculiar to
the proton and proton isotopes. - Low-energy excitations of the metal electrons cannot follow instan-
taneously the orbiting motion of the proton in a single well. They are equal to those when the proton
potential is averaged over the proton wave function representing the orbiting motion. When the proton
tunnels to another site, the low-energy excitations must be rearranged to correspond to the new proton
position. Then the tunneling integral of the proton acquires a factor of the overlap integral between two
electronic wave functions corresponding to two proton positions. This integral turns out to be much
smaller than unity and depends on a power of the temperature when h0o > kT > A. This power law is
a result of the non-adiabatic response of the metal electrons to proton motion. Such a power law will

manifest itself in diffusion constant of the proton or proton isotopes.

1. Introduction are several energy levels for them in each site. Inelastic neu-

My talk is concerned with protons or positive muons tron scattering experiments tell us that the level separation

tunneling between interstitial sites in metals [1]. This is a in a single well is about 1000 K for the proton. These par-

typical example of quantum processes in dissipative media. ticles jump among interstitial sites and diffuse in metals. The

In this case, the metal electrons constitute a dissipative sys- jump rate depends strongly on the temperature. At high

tem. But my approach to this subject was motivated by an temperatures lattice vibration is important to understand

observation of peculiar propertie's of metal electrons. As you the jump rate. At low temperatures, however, the effect of

know, the characteristic energy scale for metal electrons is lattice vibration can be renormalized. So we will not con-

the Fermi energy, which is order of electron volts. But in sider its effect explicitly. At low temperatures, the jump may

this system electron-hole pair excitations can have an ar- take place via tunneling between lowest levels of neigh-

bitrarily small energy. It is known that excitations with such bouring sites. We will study the effect of metal electrons on

a small energy give rise to two important effects. such a tunneling.

The first is dissipation. An example of this is the Korringa Here, there are three relevant energies. The first is the

relaxation of a spin placed in a metal. Its rate is proportional level separation for the proton in a single well, which is

to kT, which is a direct manifestation of dissipative nature denoted by hoo. The seond is the splitting of the lowest

of the metal electrons. The second is infrared divergence. In levels due to tunneling, denoted by A. The third is the Fermi

some cases, perturbation theory for problems of metals energy of the electrons, denoted by CF. These are generally

breaks down due to vanishing excitation energy. A typical related by

example of this is the electrical resistivity due to spin scat-
tering, which is proportional to logkT. So, our concern is CF > h > A. (1)
what these effects result in for proton-tunneling in metals.

3. Single-Well Problem
2. Protons in Metals [2] First we consider the proton moving within a single well.

We consider protons or posithe muons in metals. These The proton wa~e function Nill be denoted b) .,,(R - RA)
particles occupy interstitial sites in metals. In general, there (n 0,1,2,...), %%here R ib the proton coordinate and RA

Ber. Bunsenges. Ph)s. Chem. 9.5 1991j Au. 3 , VCII I erlaysgedeflshaft nibH. If -6940 If vinhw,. 1991 J005-9021;91, 0303-0422 S 3.50 t.2 5 ,0
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the center coordinate of the Well. We expect that Xn is close X F'(r, - R) = . , V(r, - R) I Xo(R - RA) 2 d3R. (5)
-to the harmonic-wave function at least for- small n.

We-take a jelliummodel for the electrons. The electron The electron wave function in this potential willbe written
wavefunction is denoted, by (r1 ,r2 ... ), where r1 ,r2 _,... are
the electron coordinates. In particular, 0o is the Fermi as
sphere state, where all the states within the Fermi sphere oi(L -k')'RA
are occupied. Ok-k' is the state obtained from 0 by exciting 0A = - - + ... (6)
the electron k to an empty state k'. O' -8

If, the, interaction betweenthe proton and theelectrons
were absent,the total wave function would be the product where is the Fourier transform of 17(r) whose wave num-
X,' 0. As an, interaction we take a short-range potential, ber dependence is also neglected. The total wave function is
which is denoted by written as

,V(ri- R). (2) T = Xo(R - RA) OR, (ri, r2,...) . (7)

This wave function no longer involves an infrared diver-
We consider two extreme approximations for this single- gence. Instead it turned out that it involved a large non-
well problem [3]. adiabatic effect.

3.1. Adiabatic Approximation 4. Two-Well Problem
aIn this approximation we take the total wave functions In order to see what effect Eq. (7) involves, we will now

consider a two-well problem, where there are two total wave

T = Xo (R - RA) ' OR (rl, r2,...) (3) functions corresponding to the proton in the left well (cen-
tered at RA) and in the right well (centered at RB).

where O/R is the electron wave function which is obtained
when the proton is fixed at R. Eq. (3) implies that the elec- 4.1. Adiabatic Approximation
trons follow the proton instantaneously. In this approximation, the two wave functions are

Perturbation theory tells us that O'R is written in the first-
,order of V as TA = Xo(R - RA). 'R, (8)

OR e00-'' -' (4) VIB = yo(R -RB)'-OR (9)

The effective tunneling integral in this case will be written
where the summation is over k and k' with the restriction as
that k is inside of the Fermi sphere and k' outside of it. Vo
is the Fourier transform of V(r), which we assume is inde- Af J Hu.no(R) TA d3R d3 r, d3r2 ... (10)
pendent of the wave number. s and a' stand for -k and ek,.
These abbreviations will also be used in later parts of this where HtunneI(R) is some Hamiltonian which causes proton-
paper. The phase factor in (4) takes-accounts of the fact that tunneling from Zo(R - RA) to Zo(R - RB) or vice versa. With
the proton is fixed at R. the use of (8) and (9) in (10), one finds that the integration

This wave function would be valid, if the electrons moved over the electron coordinates gives us unity, because of the
much faster than the proton does. This is not the case, how- normalization of 'OR, So, one finds that 4tn is equal to the
ever. If one takes the average of the total energy with T, bare tunneling integral A:
one finds that it is logarithmically divergent. This divergence
comes from excitations with vanishing energy. The electrons Lff = Z X(R - RB) Htuni(R) yo(R - RA) d3 R (11)
are slow due to the presence of such excitations and cannot
follow the proton instantaneously. In order to remove such
a divergence I used an anti-adiabatic scheme. On the other In this case the electrons have no effect on tunneling of the
hand Kagan and Prokof'ev took account of higher-order proton.
terms of the adiabatic scheme [4]. Their approach is more
systematic. However, it turned out that the essential physics
had already been involved in our scheme. 4.2. Anti-Adiabatic Approximation

In this case, the two wave functions are
3.2. Anti-Adiabatic Approximation

We then consider the other extreme case, where the elec- TA = 70 (R - RA) ' RA(rIr 2 ... ), (12)
trons feel a potential which is averaged over the proton wave
function: PB = yo(R - R) - R, (rl,r2...). (13)
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ihe~effective tunneling integral is now written as. with K = k - k', where the first summation is over k and
k' with the restriction-mentioned before.

44eS = .S , 'B RA d3r, d3r2 .... (14) We first fix k and k' and consider the n summation. We
set, c'- a Nh oo. We first consider the case where N is a

The overlap integral in.the above expression is calculated large integer. Then the terms with n larger than N(E, - E0
from (6) with proper normalization as > Nhcoo) may be neglected because the denominators of

those termsare large. (Here we assume, harmonic functions
I (,[ ) +(15) for the proton states.) Blit for the terms with n < N, the

(+.... () proton energy may be neglected, Then the n summation of

One finds that the second term is logarithmically divergent (20) maybe approximated by

because of excitations with vanishing denominators. This NV

means that the non-adiabatic effect implied by (12) and (13) - 5 X* (R'), o(R') eR R d3R' z (R), (21)
is quite large. --

This logarithmic divergence is replaced by a log T term We now expand the exponential as
at finite temperatures. A finite-temperature version of Eq.
(15) ig calculated as [5] . R

sin 2kFa )og D + (16) "j-0 ni
If one takes M as an integer much larger than K. R', the
exponential can be approximated by the right hand side.

where a is the density of electron states at CF, a the distance Using th;s expansion in (21), one finds that the integral'over
between RA and RB, D the cut-off energy, for the electron R' will vanish for n > rn, when X,'s are harmonic wave func-
which is of the order of CF. This is logarithmically divergent tions. This fact enables us to distinguish two cases.
as T-- 0. Calculation of higher-order terms tells-us that [5]

Case 1L N 5. M

fr = '(k--/K,(17) The summation over n in (21) can be extended to oo,
(D) because the added terms vanish. Then one can make use of

the completeness theorem

where K is defined by 00

K = 21 P012 2 1 - sin2ka (18)

a /and find that (21) becomes

Since kT/D << I in general, the non-adiabatic effect incor- 0 A (i. KR)"
porated in this anti-adiabatikscheme is large, whereas the x°(R),, o
adiabatic scheme had no effect on proton-tunneling. & -a "j - !

The correct answer will be in between. We will see, how-
ever, that this non-adiabatic effect does exist in a correct -- o(R) e"'.
theory. Eq. (17) is still valid only with replacement of D by
hoo as Kagan and Prokof'ev first pointed out [4]. From the above derivation one sees this result is valid when

5. Systematic Perturbation Theory for Single-Well Problem aA' - Ck>R. (22)
To find a correct answer, we write the wave function for hiw 0  

"R
the single well problem as

VA = cooZo(R)4o + Z c. X,,(R) O, (19) Case 2. N < M
noc In this case, among the terms with n 0 to N, only the

where we set RA = 0 for simplicity. In the first term bbth term with n = 0 will be important:

the electrons and the proton are in the ground states. In the Vo 0 11ol2 e", R, d3R'
second term, both or one of them may be excited. A per- 7.o(R)
turbation theory tells us that the first-order term is written a'-8
as PO e i(k-k'). RA

7o(R).
Vo jy7*(R') 7(R') e i ', ' d3 R '  6'-8

- - +a-(R) Ok..k (20)n =0 En - Eo + c"'- eThis result also applies to the case where c' - h . w oo.
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Putting allthese together, one can write the correct wave We note that the integration over R in (10) is mainly
function for the single-well problem to the first-order of V contributed from the region where Xo(R- RA)' and
as XZ(R -RB) overlap. In this region R- RA I a/2, where a

is the jump distance. Then (26) may be replaced by
AA= (ek + 0")" Xo(R -RA). (23) 14 kFaI2 ,1

where N = ka[2 ka/2 <, 1" (31)

'0e i(k-k')RA
tA= EL C ' k-A + ... , (24) Since kFa is usually larger than unity (-3.5 for Cu metal),

we take the second case 'of (31). The restriction L in (30) is

OH = u 'M ek - ' R  , . + .... now expressed by [6]
H C A4 + ... (25)

& (kFa/2)ho > ek, - ek > 0, (32)

In the low frequency part 01 the summation is over k and
k' with the restriction so the cut-off B is now defined by

Nhwo > e,.-ck > 0. B =(kFa/2)hoo. (33)

In the high frequency part OY, the restriction is With the cut-offthus defined, we find that (30) is calculated
as

ek,-e k > Nho. B

N is given by 
Kog- +

N= K K-R > 1 (26)

A typical magnitude of Kc is kE: the Fermi wave number, Finally we have

whereas R may be of the order of the radius of the proton K

wave function. Thus we see that the correct wave function df = d. ( .--) (34)
is a hybrid of the adiabatic and anti-adiabatic wave func- B

tions. This was first pointed out by Kagan and Prokof'ev Now I will explain what (34) implies. When the proton is in

the left well, the electrons are pushed to it and an electron
cloud will be formed around it. When it tunnels to the right

6. Effective Tunneling Integral well, the electron wave function must be rearranged so as

Having found a correct wave function for the single-well to correspond to the new proton position. Excitations with
problem, we now consider the effective tunneling integral energy larger than B can follow the proton instantaneously,
(10), where so they do not contribute to the non-adiabatic effect. Now

the proton goes back to the left well within a time -dh/A.
R(4'A + '14). Xo(R - RA, (27) So excitations with energy less than J do not have enough

time to rearrange the wave function, so they do not con-
(D + '1). Zo(R-R 8). (28) tribute to the non-adiabatic effect either. Only those exci-

tations with energy between A and B contribute to it. This
The renormalization factor is solely contributed by the low is what (34) implies.
frequency parts: I will mention two corrections to (34). The first is self-

consistency correction due to Yamada et al. [7]. Actually
A = ~ A d3r1 d.r,.... (29) the proton goes back to the original site within a time -h/

,eff, because Aer represents the real speed of tunneling. -So
The high frequency parts follow the proton instantaneously weus have

and do not contribute to renormalization. The above over-

lap integral is calculated as

1 - IL I Ro' [1 - eI k -i '1 k(RR-
R]

(8- C + d)2 +( instead of (34). Solving this equation for 4f, one has

Here, ve have put J in the denominator. We note that J K

should be included in the unperturbed energy, because we J& a -- () 1 -K (35)
are doing perturbation expansion in terms of V.
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Where " is the characteristic energy of our problem. A sum The cross-over- occurs when F -- zi. The cross-over tem-
rulectells, us that .K < 1/2 for a singly charged particle in peratuie is given by
metals [8]. Thus there isno possibility of self-trapping in
this case. kT ,z 3, (38)

The second correction is due to a finite temperature. The
above result is for the ground state or for kT < J. When with the assumption eK,-, 1.
B > kT > 3, excitations with energy up to kT are not like In the overdamped case (kT> 3), the jump rate to the
those of a degenerate Fermi system, and so do not contribute neighbouring site is given by
to the non-adiabatic effect. Thus the low-frequency cut-off
must'be kT: W = A

. (39)
F'

Ae = A. (kT K B > kT,> 3. (36) which is proportional to T2K- 1. Such a power law of the
\BJ diffusion constant was observed for the positive muon in Cu

and Al [10]. A cross-over from the overdamped to coherent
Our main result is this power law of the effective tunneling case was observed for the proton in the Nb - O system, as
integral, the temperature is lowered from 10 K to I K [11].

In conclusion we have shown that tunneling of light par-
7. Connection with Experiments ticles in metals is influenced by the metal electrons very

Conw i wiscsthe Epeits pmuch. This is due to the fact that excitations of the electronsI +will discuss the possibility of observing this power law.

For this purpose the temperature range defined by the in- in metals can havc an arbitrarily small energy.

equality in (36) must be experimentally accessible. For the
proton hwo is about 1000 K and B is of the same order, still References
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Quantum Coherence in Rate Processes
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The quantum dissipative dynamics of a particle which tunnels through the barrier of a double well potential
and is coupled to an Ohmic heat bathis studied. Exact formal expressions for correlation functions are
presented and examined. Attention is focused on the region in which coherence effects are important, and
on the algebraic long-time tails at zero temperature. Coherence effects in the dissipative quantum transport

of a particle in a iight-binding lattice are also investigated.

i. Introduction gcnstates. In the following we provide a unified view of the
The decay of metastable state is a very common phenom- two-state dynamics under the influence of conduction elec-

enon and plays a central role in physical and chemical sci- trons. Special attention is given to the crossover from in-
ences. At high temperatures the decay is thermally activated, coherent to coherent tunneling and to the behavior at very
and the rate of classical escape over the potential barrier low temperatures where the presence or absence of system-
follows the Arrhenius law [1]. As the temperature is low- bath correlations in the initial state gives qualitative differ-
ered, thermal'fluctuations die out exponentially fast so that ences in the evolution of the system at long times. The equi-
at very low temperatures the met astable state can only decay librium correlation function shows algebraic long-time tails
via quantum tunneling. In recent years, it has become clear at zero temperature, and the system approaches thermal
both on the experimental and theoretical side that quantum equilibrium always faster for a factorizing initial state. Cor-
tunneling is strongly affected by the frictional influence of respondingly, the spectral properties of the system at low
the environment, this being the impetus behind the intense frequencies are qualitatively influenced by correlations in the
increase in activity in this field. Dissipation was found to initial state. The important influence of conduction electrons
cause novel features such as dissipative phase transitions on defect tunneling has been verified in neutron-spectros-
[2], exponential suppression of tunneling rates at zero tem- copy experiments on hydrogen trapped by oxygen in nio-
peratures [3], and qualitative change of their behavior at bium [7]. We also consider the crossover from incoherent
finite temperatures [4]. The theoretical predictions for the to coherent quantum transport of light interstitials in a one-
temperature and damping dependence of tunneling rates in dimensional tight-binding lattice in the presence of conduc-
macroscopic quantum tunneling (MQT) have been verified tion electrons.
precisely, e.g., in experiments on the decay of the zero-volt- The functional integral method provides a unified ap-
age state of a Josephson junction [5]. proach to the dynamics of two-state and multi-state systems

It has been pointed out by Kondo that the dynamics of in the presence of dissipative influences. In Section 2 we
tunneling systems in metals are strongly affected by the in- briefly review this method and present exact formal expres-
teraction with conduction electrons [6]. The nonadiabatic sions for the two-state system. Section 3 is devoted to the
effect of the electronic screening cloud causes anomalous discussion of the dynamics both in the region of incoherence
temperature dependence, such as the in'crease of the diffusion and coherence. In Section 4 we study coherence effects in
coefficient with decreasing temperature, a behavior first ob- the quantum transport of a particle in a multi-state system.
served for muon diffusion in aluminum and copper. In this 2. Exact Formal Expressions For The Two-state Dynamics
region, the defect tunnels incoherently to a neighboring site.
As the temperature is decreased quantum coherence between We consider a quantum particle interacting with conduc-
many sites becomes increasingly important. The defect be- tion electrons and tunneling in a double well with bias en-
comes delocalized with a wave function extendilng over sev- ergy he and with tunneling matrix element h.1,. We consider
eral interstitial sites. In this contribution we focus our at- the case where the characteristic energy scales of the prob-
tention to the transition from incoherent to coherent tua- lem are such that
neling in the presence of a fermionic environment. o > hoo > hAo. he, kB3T. (2.1)

The simplest situation for quantum coherence is the de- Here, V0 is the barrier height and hw0 is the energy of x-
localization of a particle in a double well potential. At uf- citation in a single well. The dynamics of the isolated system
ficiently low temperatures, excitations in the two wells can s then simply described by the pseudospin Hamiltonian
be neglected, and the double well can be truncated to a two-
state system formed by two energetically split tunneling ei- Ho ±- (Ah a + a), (2.2)

2
*) On leave from Dipertimento di Fisica, CISM, Universiti di

Genova, Italy. where the a's are the Pauli matrices.
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In the temperature region of interest the influence of the been given Refs. [12] and t8]. The other dynamical quantity
conduction electrons is governed by gross features such as is the symmetrized thermal equilibrium correlation function.
the density of low energy excitations off the Fermi surface. The Fourier transform of C(t) is directly related to the dy-
The fermionic bath can be mapped onto a bosonic bath namic structure factor for neutron scattering [13,14].
with an -appropriately chosen spectral density of the cou- Within the real-time path integral approach the exact formal
pling strength. The simpler spin-boson Hamiltonian is solution of C(t) has been discussed in Ref. [15]. Let us briefly

sketch the derivation. The functions C(t) and P(t) are related
H H + L 2m+ -rm x? - "cxoX, (2.3) to the joint probability P(a,t; a,O; U'to) according to

2rn 2
C(t) = lim Y- [P(Ut;a,O;ato)

where the parameter qo represents the distance between the t - -

two wells of the original problem. The effects of the bosons + P(- 6, t; - a,0; a, to)] - 1, (2.7)
arein the spectral function [8] P (t) = 2 lim P(+ 1, t; a = + 1,to 0) - 1,

Jo) = - 1 C ,2 6( ) _ ) , (2.4)
2 in 6P1J where in the latter relation the system is constrained to the

state a = + I of a, for negative times T in the region
and the equivalence with a fermionic bath holds for the to < T 0. As the heat bath modes are represented by Gaus-
specific form sian integrals in the functional integral approach, they can

be evaluated exactly. One finds that the environmental in-
J(co) = il w e - (2 nh Klqo) e' t , (2.5) fluences are described by a complex interaction S(r) + i R()

between each pair of tunneling transitions. The pair poten-
where we have chosen an exponential cut-off. The spectral tial depends on the spectral density and on temperature
density (2.5) is known to cause Ohmic dissipation in the through the relations
classical limit [3]. Here, tj is the phenomenological friction
coefficient, while K is a characteristic dimensionless damping O ) / \
strength introduced by Kondo [6]. The parameter Kis iden- S(T) -= - d _ (1 - coscor) coth
tical to the parameter a introduced by Leggett et al. [8]. 11 0 C( (2.8)
The cut-off frequency of the fermions is of the order of the q d 0i
Fermi energy cr > ho0. However, since we have truncated R(T) = o do 02 sinoT,

here the original potential problem to a two-state problem,
the spectral density of the environment is effectively cut off which for the special choice (2.5) and for COr > 1 assume
at a frequency o, which is of the order of o0 [8,9]. The the form
high-frequency modes (co > co,) affect the tunneling process
only by a dressing factor [8]. In the following, J denotes F rfiw (rtr
the matrix element renormalized by this factor. The damping S(1) + iR(r) = K 21n F sinh L- + ir]. (2.9)
strength K can be expressed in terms of the original para-
meters characterizing the Fermi bath and the coupling [10]. T eThere followvs from a sum rule that K is restricted to the The equivalence of the bosonic bath with the special choice
range 0 < K < 1/2. (2.5) with a fermionic bath follows from the fact that theThe dynamic quantities of interest are the functions (1/ influence of conduction electrons indeed leads to a pair in-1/kaT) teraction of the form (2.9). (See, e.g., Ref. [6]).Following Ref. [8] it is convenient to formulate the ex-

pression for the joint probability in terms of a single path
NO) = <a.(t)>, (2.6) integral over the four states of the reduced density matrix.

C(t) = 1 <o'(t) M() + O) CAO)> - The periods t2j < T < t2,. 1, in which the system is in a
2 diagonal state, are called sojourns, and the periods t2j 1 <

T < t2ij, in which the system is in a nondiagonal state, are
The function P(t) describes the expectation Nalue of o at called blips. There are two kinds of sojourns, and the j'th
time t > 0 supposing that at all times t < 0 the system has sojourn Nvill be labelled by /. = + 1 (/., = - 1) if the system
been held in (say) the state a , 1, and the environment is in the RR(LL) diagonal state. Similarly, there are two
is assumed to have come into thermal equilibrium with it. kinds of blips, and wNe shall assign the label ', = + I (", =
The system is let go at t 0, and the system plus environ- - 1) to the j'th blip, if the system is in the nondiagonal state
ment is allowved to evolhe according to the full Hamiltonian RL(LR). For later conenience %Ne introduce the blip lengths
(2.3). The conditional expectation value P(t) is the relevant r, = t.,j - t2_i and sojourn lengths s, = t2,, - t2.
quantity in the macroscopic quantum toherence (MQC) It is straightforward to %Nrite dowNn the Narious factors
problem. The exa,,t formal solution for Pit) babed on the onstituting the path integral expression. The amplitude per
Feynman-VN'on influence functional method [11] has unit time to switch from a diagonal to a nondiagonal state
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•(or vice versa) is +iA/2. The amplitude to stay.in a sojourn with
s unity, while the amplitude to.stay in the j'th blip with

label. 1 and length zlis exp(iefjj). It is convenient'to include A (+) =(- 2 cosnK' c os i

this factor into the phase of'the influence'functional. If we 2J-I / (2.17)
dfihe, A _A 2costK\,, (.

SJk ='S(tJ-t ); (2.10) 'I 2 ) si e, ,

-alk = S21, _2k-I + S21-.,2k - S2.2k - S2J..1,2k.,I

The expressions (2.14)-(2.16) represent the exact formal so-
the influence functional for n blips at negative times and in lution in the form of a series in J2 for P(t) and C(t). The
blips at positive times (modified by the bias factors) may be function P, (t) (P- (t)) is the symmetric (antisymmetric) con-
written F,.,, = G,.,H,,,, where tribution of P(t) under the inversion of the bias c --* -c.

. 1 The assumption of a factorizing system-bath initial con-

G,,,, =exp E S'1J; - E , kA;k, dition at t = 0 corresponds to the neglect of interactions
1 I J.2 k-1 between the positive and negative time parts in (2.16). In

S"(2.11) this approximation we have C(t) = C0(t), where
H,,,,n = exp J E I[e + iT Kxi& j "C (t) = P (t) + P P_ W (t), (2,18)

Itv is obvious from (2.11) with (2.10) that the blips may be and where P, = P_ (t- co) is the equilibrium value of P(t).
viewed as neutrals,€airs of charges ±-1 (dipoles). The termAvi eeas et ' waraon eergy of two bipes ad em Hence in this approximation C(t) is completely determinedAk represents th6 uatraction energy of two blips, and be- b h o p nnso ~)cause it is multiplit by the factor r , i in (2.11) blips can both by the components of P(t).
causeait is repl ony aothe for th time o d b ipanote- In recent theoretical studies [13,14,16] the structure fac-
attract and repel one another, For the time ordered inte- tor for neutron scattering has been calculated from the
grations over the flip times tj we introduce the compact Fourier transform of C(t). Below it will be discussed that
notation the low-frequency behavior of the structure factor is modi-

13 o I fled drastically at low temperatures, when system-bath cor-
S D,,,,{tj} = dt 2,+ 2,,. 1 dt 2.,, dt 2,, ' dt1 . (2.12) relations in the initial state are taken into account. Corre-
(, 0 0 10 ,o spondingly, the long-time behavior of C(t) at T = 0 changes

Summing over all possible arrangements of blips and so- qualitatively in the presence of the correlations in the initial

journs we find for the joint probability the expression state.

At42 -nI 3. Dynamic Properties
P(U't;U,0;atO) = -,-0 4 (2.13) Despite its formidable appearance, the above formal ex-

I Dpressions for P(t) and C(t) can be summed in certain limitslo )1  (X'" ' 1,, by analytic methods. This is the subject of this Section. It is

important to note that much progress has been made also
The sum over arrangements {,} and {;x} extends over the very recently in the numerical path integral simulation of
possible values + I of the ) and y,, (j = 1,2,...,m + n). The similar expressions by Monte Carlo methods in conjunction
double prime in {x}" is to indicate the constraint xo = a' with a stationary phase filtering method [17].
Xn = = a. Next, the Xj-sum in (2.13) can be carried out
straightforwardly. In the end we find from (2.7) with (2.13) 3.1. Noninteracting-blip Approximation
the result

When the interblip correlations Ak are neglected, the
P(t) = P(t) + P_(t), (214) terms of the series (2.15) and (2.16) are in the form of a

Q0 = PW+ Q (2.14) convolution and the Laplace transforms P0.) and Co.) can
be summed to [12, 18, 8, 19]

where P,(t) = 1+ P+ (t) and .) .)
ooI

P,(t) = Z SD,,o{t;} E A(t)GM.o, (2.15) + = 5) P_m= 0 " 1,4}1 m0

where P., = tanh(hfla/2), and

Q(t) =- lim Z Z (tan(nK))2
1 -°~m*nl(2.16) P,,0) =1
'5+ 1"2+) +Zm.)]/2 (3.2)D.,,. ti} A.(+). G..2.
,o 'Q6 (.) = -tan(irK) [-r(2+) - Z 0-)]A O;./2iU.) .
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Here, 2* = 2 + it. The self-energy Z(2),is given by the F(K) ( 2nkBT 2K-I
expression T (l-K)k -hL1 - (37)

( 1 1/' r(K) (lr~r' 2K-1 j 2

1-2 , T
I.) 2t ] K+hfi2/2n g(2), (3.3) 2 r(K+ I/2) ho), ic,,

which for K < 1/2 increases with decreasing temperature.

where g(2), = T(1 + K+ hP2/2i)/F(1 - K+ hfl2/21) and The high temperature behavior T2K-
1 was discussed first by

wheref(z)is the gamma function.'Here, we have introduced Kondo[21,6].

the effective, zero temperature tunneling splitting [12]
3.2. Weak Damping Case

Ad = A Id KI( -') -2K)] (3.4) The case K < I is especially interesting, since for defect
0J, [costK)I(1-. (3.4) tunneling in metals K was found to be very small, namely

near K = 0.05 [7]. Since the blips can both attract and repel

The behavior of P(t) based on these expressions has been one another, one finds that for a symmetric system (c = 0),
studied in Refs. [12], [18], [8], and [19]. The corresponding the effect of the interblip interactions is of order K2, while
properties of the neutron scattering function the intrablip interactions give nontrivial effects of order K.

Hence, the NIBA is a systematic weak-coupling ap-
proximation for a symmetric system down to T = 0 (except

j(o) = Red(a=iho) (3.5) for extremely long times, as discussed below). For asym-
metric two-state systems the effect of the interblip interac-

are discussed in Refs. [13], [14] and [16]. tions contributes to the order K at temperatures T < To, so
Let us examine the self-consistency of the noninteracting- that the NIBA is inadequate in this case. A systematic study

blip approximation (NIBA). It is obvious that for fairly high of the effect of the interblip correlations in linear order in
temperatures the pair interaction S(T) in (2.9) may be ap- K is given in Ref. [16]. In the remainder of this Section we
proximated by restrict our attention to the symmetric case (c = 0).

In the region T < T*(K) the system shows damped os-

S(r) = 2K ln(hfo2,/2nt) + 2nKT/hfi. (3.6) cillations with frequency 0 and damping rate y. At very low
temperatures, T < T*(K), they are given by

With this choice the interblip interactions Ajk cancel out, f(T) = hAl{1 + K[Reu(ihA/2ikBT)
and we end up with the expressions (3.1) with (3.2) where

the self-energy Z(2) is in the form (3.3) with the factor - ln(hAd,2nkBT)]}, (3.8)
g(A) = g(2 = 0). Thus, the self-consisiency condition of the
NIBA is hflIA±I < 2n, which in the relevant frequency range y(T) = (irK2)hd.coth(hA'12kBT),
corresponds to temperatures T> To, where kBTo = h(A2

+ 2Pu. In the limit g(2) -- g (. = 0), the functions P()) and where ip(z) is the digamma function. Correspondingly, the
C(.) have apart from a static pole at 2 = 0 three dynamic scattering function has two Lorentzians centered at ) =
poles determined by a cubic equation with real coefficients. +(T) with linewidth 2y(T).
The trajectories of these poles and the corresponding be- At temperatures in the range To < T < T* the formulas
havior of P(t) have been discussed in Ref. [19]. (3.8) smoothly map onto the solutions of the quadratic equa-

For a symmetric system (s = 0), the functions P(t) and tion discussed above. Near T = T* the two Lorentzians
C(t) are the same in the NIBA, and, for kBT> hAt, the merge into another, while at temperature T> T* there is
Laplace transform F(.) has two poles which are determined only a single quasielastic peak centered at w = 0 with line-
by a quadratic equation, as follows from (3.2) with (3.3) and width 2y(T) where 7 is given by (3.7).
go.) --* g(2 = 0). For K < 1/2 the poles are complex conju-
gate to each other for T < T* (K), and real for T> T* (K).
The crossover temperature T*(K) separates the coherence 3.3. Long-time Behavior of P(t) and C(t)
region in which the system shows damped oscillations from The NIBA gives the as)mptotic behavior both of P(t) and
incoherence. The corresponding phase diagram has been C(t) qualitativel) wrong at low temperatures. In the absence
discussed in Refs. [20,19,8]. A slightly different definition of a bias the functions P(t) and C1(t) are the same, and
of the phase separation line, namely that the scattering func- within the NIBA at T= 0, they are given in terms of a
tionj(w) is double peaked below T*(K) and single peaked Mittag-Leffler function [18], which decays as)mptotitally
above T*(K) has been considered in Ref. [13]. For the lim- with the power law t T

' . The asymptotic behavior of
iting value K = 1,2 one finds T* = hJ(,',QBt), while for P(t) and of C(t) is changed qualitatively by the interblip
K I 1 there holds T* = hJ,/(Kkitn). At temperatures correlations. Regarding P(t), the quantitative calculation of
T > T*(K) one finds incoherent relaxation P(t) = exp( -t) the effect of the interblip intcractions is xer) difficult sin.e
with a rate all frequency scales are coupled together, as is well-known
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from the-Kondo problem. In the first step, the correlations itive muons or protons in metals [25], and for the dynamics
lead-to irreducible sojourns which are effectively narrow. In of the phase of a resistively shunted single Josephson junc-
the next step an irreducible blip which has inside an arbi- tion in the extreme quantum limit [26,27]. The diagonal
trary number of irreducible sojourns is considered. By it- elements of the reduced density matrix are the occupation
erating this procedure we then go to longer and longer time probabilities Pn (t) of the n'th well with the initial condition
scales. In.the end-we find that f(2) is regular at the origin P, (t- 0) = ,.0. In the tight binding limit each transition
[22]. Hence, P(t) shows in fact at T= 0 not algebraic, but between system states is associated with an amplitude
exponential decay, as t -- oo. ±iA/2 per unit time. We shall assume that the environ-

On the other hand, the equilibrium correlation function mental coupling is of the form (2.3)-(2.5) so that the com-
decays algebraically at zero temperature. The algebraic plex interaction between any pair of transitions is again
long-time tails of C(t) arise from the correlations between given by (2.9). An exact formal expression for P, (t) which is
the positive and negative time parts in the function G(',, = in the form of a power series in 2 has been derived in Ref.
Gm., (T= 0) defined in (2.11). As t.--+ co, the leading contri- [28]. It may be written in the form
bution under the integral in (2.16) is

P. (t) = X (- 1) (/2) '2n,
A1+-G. G(0) G(0)A(+A(+) (3.(4.1)

- AIl rrD, 0{t,}o) G,, Z H,,,
E oJXJ490 (4)) lXX)

n+1

where So(t) = 2Kin(wet) and where ,,(°)A(+ and ()A(+) where
are the interaction factors at zero temperature in the positive Gill ,,- l S( 1-t)_ i- ", J d
and negative time parts, respectively. With the use of (3.9) ep'2 i.',".. (4.2)
one finds in the end r 2-I 21 1

H,,, = expli nK J k F, 1.
C(t) = (2hX0) 2 o(t), (3.10) L k- J-k+I

where we have identified (aP,,/ahc)L.o with twice the static The sum over arrangements ( j} and {x) extends over the
susceptibility Zo at T = 0. possible values ± I of the j and x,(J = 1,2,...,2m), and the

Inserting the above zero temperature expression So(t) for prime denotes that each arrangement obeys the constraints
the pair interaction we finally get the algebraic long time
behavior [23] 2,,n 2n,X-).  n~ - 0. (4.3)

C(t--+o) = -2K(2h0) 2 --. (3.11)
t Further, he is the potential drop between neighboring wells

provided by the external force F = he/qo. It is convenient
The behavior (3.11) is exact for K < 1. From (3.11) we may to introduce the generating functional
also infer the behavior in frequency space near co = 0. We
find for the scattering function (3.5) +o

Z0.,t)= E eA qnP,(t). (4.4)
j(o--O) = 2nK(2ho) 2IcoI. (3.12)

Now, the {f. }'-sum can be done explicitly, and moments
This relation is analogous to a relation that has been proven
by Shiba [24] for the general Anderson model. It is inter- (qN(t)> of P, (t) are obtained by differentiating N times the
esting to note that the formula (3.12) holds also in the pres- function Zo.,t) with respect to ) at 0. One then finds
ence of a bias, if we identify yo with the nonlinear suscep-
tibility at zero temperature. <qN(t)> = q o0'

We conclude this Section with the remark that recently -' (4.5)
the functions C(t) and P(t) have been determined exactly in (
the entire (t,e,T)-parameter space for the special value K = Do{tj)} Z
1/2 [15]. 0 RX

The coefficients of the first and second moment are
4. Quantum Coherence in the Dissipative Multi-state

System . 2M-iIn. -L 1 sin(nKgp,
In this Section we deal with coherence effects in the quan- au,) = I ,

turn transport of a particle in a onedimensional tight-bind- 1 21n-1 2,,-1 (4.6)
ing lattice with spacing qo. This may be looked upon as a a(2 

- - Z cos(rKg,) 1 sin(itKg1 m),
somewhat crude model for diffusion of interstitials like pos- I 2 1=1
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wherwmee have introduced the off-diagonal measure Thus, (4.11) is exact at T= 0 and at high temperatures, and
reasonably interpolates between these cases in the inter-

2m mediate regime. However, it does not decribe the algebraic
, I I J+= low temperature corrections to .the zero temperature mo-

bility.
,Eq. (4.5) is the exact formal expression for the time evolution The low temperature expansion of the mobility is deter-
of a particle in a tilted tight-binding lattice in the presence mined by the low temperature expansion of the pair inter-
of Ohmic dissipation. action S(r). We may write S(r) = SO(T) + SI(T), where So(T)

At high temperatures, the particle tunnels incoherently is the zero temperature expression of (2.9) and where S('r)
from-well to well. This particular case of the dynamics can represents the contributions at finite T. The leading low
be described by master equations for the probabilities P,, (t) temperature correction is given by
[29,30]. It is the case, where the density matrix after each 2 2

pair of transitions is again in a diagonal state. In the above S,(r) = K-L 0 + 0 . (4.13)
it formally corresponds to restricting the sum over paths by 3 \h13p
the condition Ig,,, I < 1 for all j and m. In this limit the
nonlinear iobility Thus we obtain from (4.2)

p = lim <q(t)>/Ft (4.8) G G , f 2 2n 12
$.. = G011 - K) +O(T4)I. (4.14)

is found to be y = tanh(hflc/2)q0y/hs where y is the rate of Substituting (4.14) in (4.5) we see that the second term in
incoherent relaxation in the biased two-state system [18]. the curly bracket of (4.14) can be generated by differentiation
The linear mobility p is related to the diffusion coefficient with respect to the bias. In the end we find for the mobility

in the region K < 1 the asymptotic expansion
D = lim -q 2 (t)>It (4.9)

1-00 t2 /kT 2 1 02

pu(T) = ji(T=0) + K-I
of the untilted system (c = 0) by the Einstein relation ( h 30 (4.15)

" (ci(T = 0)) + 0(7 4).
Mi = D/2k T. (4.10) The leading temperature dependence is given by a T2-power

law and the numerical factor in (4.15) is exact for arbitrary
In the high temperature limit one finds D = Do, where Do
- o2y, and where y is the rate (3.7) describing incoherent bias and for all K < 1.
relaxation in a symmetric two-state system. Note that in this It is interesting to note that if one evaluates the second

limit both the mobility and the diffusion coefficient are of moment <q2(t)> with the pair interaction (3.6) one finds for
order A2.  the diffusion coefficient (4.9)

As the temperature decreases, quantum coherence effects kB T
leading to contributions to the mobility of higher order in D = q0 [I -[ 1/12?(y)]. (4.16)
J2 become increasingly important. Such contributions are iK
partly taken into account within a self-energy approach in Comparing (4.16) with (4.11) we see that the Einstein relation
Refs. [31] and [32]. (4.10) is satisfied in all orders in d2. As the temperature

The formidable expression (4.5) can be summed if we in- decreases the diffusion coefficient goes through a maximum
sert the high temperature formula (3.6) for the pair inter- [26], and it approaches zero as T--*0. Thus, the system
action S(r) [28]. The result for the linear mobility is shows subdiffusive behavior at T = 0. It can be shown quite

generally that for K < 1 and T = 0 the second moment be-
S= poll -1/I0)], ('1) haves as <q2(t)> ; Int as t--+ oo.

For the special case K = 1/2 the formal expression (4.5)
where MA = q'(2rhK). The function 196) is a modified can be evaluated exactly for arbitrary T, t and & [28]. The
Bessel function, and result for the nonlinear mobility is

y = (2rKhY,/kT) ,  
(4.12) p(T) = Mo-Imp(1/2+hy/rkBT+iha/2ikBT), (4.17)

and y is given by (3.7). The formula (4.11) is a consistent
result for temperatures for which y is order of unity or where y = (K = 1,2) = nJ2 '(2wj At high ten eratures,
smaller. Astonishingly, it also reproduces the correct zero (4.17) simplifies to the form discussed previously,
temperature result for the linear mobility p,(T= 0) = Io, a
value obtained from a duality transformation between the I(
tight-binding limit and the weak corrugation case [33,30]. = putt-tanhhflai2), (4.18)
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Dynamics of an Impurity Spin Coupled to a Spin-Boson Dissipative System
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The dynamics of an impurity spin coupled to a spin-boson dissipative system is studied using the resolvent
expansion tehnique. In one particul,,r physical realization the model simulates a highly anisotropic Kondo
system. The transverse correlation function of the impurity spin is calculated and the result obtained is
analyzed in various limiting cases. NMR lineshapes are also calculated for various temperatures which
are relevant in another physical realization of the model. Motional narroving is observed at high tem-

perature.

1. Introduction as positive muon or hydrogen, tunneling between two trap
An example of current rtsearch interest in rate processes sites in a metal [1]. This example concerns the stud) of a

in dissipative systems is found in the physics of a defec-t, buch quantum tvNo-btate b)btem in cuntact Nith a thermal bath
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/

Although thelatter-is-made up of fermions,-the low tern- tronic.spin a of the impurity, A quantity such as C.. (t)
perature behaviour is dominated by low-lying excitations would'be relevant in interpreting resonance experiments e.g.
off the Fenrisurface which are approximately described by nuclear magnetic resonance in Kondo. like systems [3]. A
bosons. This has motivated the introduction of the-spin- related quantity is also useful for analyzing other hyperfine
boson Hamiltonian that has been the focus of much atten- line-shapes as can be measured by the M6ssbauer and an-
tion- in recent years [2]. The Hamiltonian, written as gular correlation techniques [4]. It may be further men-

tioned that a stochastic version of (1.3) has been looked at
Y - a ' + a hz1u- by Kehr and Kitahara-in which the authors consider the

+ A o a+ G,(b,-b) (1.1) depolarization of a positive muon tunneling between two
+ Z hojbb,, sites which have oppositely directed magnetic fields [5].

J The plan of. the paper is, as follows. 'In §2 we set up the
accompanied by the spectral function: method of calculating C, (t) based on the Hamiltonian

given in (1.3). The method, which goes under the name of
J(0o) = (2/hz) GJ1 (w - coi) = Ko e - ID, (1.2) "relaxation theory", is only briefly sketched here as most of

the details are already given in our earlier paper on structure
provide a mapping of the two-state system in a fermionic factor calculation for the spin boson model [6]. As shown,
bath to-a two-state system in contact with a bosonic bath. in [6], our approach is entirely equivalent to the dilute
In the above equations a's are Pauli spin operators repre- bounce gas ap proximation within a functional integral for-
senting the two-state system, Jo is the tunneling frequency, mulation of the problem [2,7]. In §3 we analyze the result
b1 (bj4) is the; annihilation (creation) operator for the jth for the correlation function calculated in §2.
boson of freqt'ency wj and G is the coupling constant. The
assumed form ofithe spectral density given by the right most 2. The Transverse Correlation Function
termof (1.2) describes what is known as Ohmic dissipation
parameterized by the dimensionless coupling constant K, 2.1 The Preliminaries
and the high frequency cut-off D. We have argued earlier [6] that a convenient perturbative

The object of the present investigation is not tunneling treatment of the spin-bath coupling (i.e. the second term in
states in metals but the spin dynamics of an impurity spin (1.3)) ensues upon making a unitary transformation of th'
I coupled to a spin-boson Hamiltonian. What we study is Hamiltonian:
therefore a variant of the problem posed in (1.1) in that the
a's now represent a real spin-half entity which in turn is in JT = S Y*' S -  (2.1)
interaction with another spin L The chosen Hamiltonian is where S is a unitary operator defined by
Written as

I S exp (-U, (Gilh wj) (b-bF)). (2.2), =aI, o-, - hdo a. + a. Gj (b + bj+)

G (13 We obtain

j ,Tw, = 1 1

where a is a coupling parameter and the last term is a 2 a lZ r= - a_ + B2 + (2.3)
counter-term that disappears upon a unitary transformation + E h osbj+ bs
on X¢ (see below). We are interested in enquiring what J
should be the influence of the dissipative dynamics of a's
on the spin dynamics of L In particular, we are interested
in calculating the transverse correlation function B= exp(2E(GIho)(bsbjl)" (2.4)

C.. W = < I,(O)1(t)> , (1.4)

In terms of . the transverse correlation function in (1.4)
where <...> denote statistical average. may be written as

A motivating factor behind formulating the Hamiltonian
in (1.3) is the interest in studying a highly anisotropic Kondo C (t) = Tr (- 0) [x(0) (2.5)
system which is approximately described by (1.3) sans the .
first term [2]. In this context a represents the electronic spin where
of the localized Kondo impurity whereas the spin-boson
part is taken to model the interaction between the localized exp(- ) (2.6)
spin and the conduction electrons. The additional interac- Tr [exp(- #.Re)] (
tion, represented by the first term of our model Hamiltonian, and
is viewed to describe a uniaxial hyperfine interaction with
coupling constant a between the nuclear spin I and the elec- 7. (t) = exp(iYt t) I (0) exp(-if t). (2.7)
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Wemay further write where.Ll is the Liouvillian associated with the interaction
Hamiltonian:

U (t) 1. (0) (2.8)

where ,,"I -"hLo(B+a- + B_ a+), (2.16)

and LB is the Liouvillian associated with the bath Hamil-
U(t) - exp(iLt), (2.9) tonian:

L being ,the Liouvillian, associated with i,. (The notations Ye. = w hbj b. (2.17)
used here are the same asin [6]). Making 'the customary j
factorization approximation the density matrix j can be ex- As we require the matrix elements of [U(z)]ay amongst thepressed asAswreurthmarxeeetof[z],amntte

combined spin states of I and a it is convenient first to
a as" ,a, (2.10) -tabulate the matrix elements of the self-energy given in (2.15).

Applying the properties of the Liouvillian, we find
where, s is the density operator for the spin system denoted
by the first term in (2.3) and eB is the density matrix for the (mopnmiv[L(z-iLs-iL) - ' Li]avlmfo',m, v') = (l/h)nn
bath the Hamiltonian of which is given by the third term in
(2.3). This approximation is very good unless either the cou- • <nIaBan> f. <inlr1Itn'> (6,n'zYt'ilp'n>
pling constant K or the temperature is very small. With this ( n - -E,.)/h-i( 1cz atf -

the Laplace transform of C, (t) is given by + <v'nljqn'> <qn'ljvn>
+

., (z) = Trs as h, [TrB (ea V(z)] (2.11) z-i(E,,-E)[h-i(/uao0 - alnh)[2
<p nla*'ll/p'n'> <v' n'ldrllvn)

where z - i(E, - E)/h - i(p'a0in0 - valni)/2

(21)(n I.*'ljjtn'> <v'n'ldr, lvn> )
Nz) = -- , (2.12) -z -i(E'- E"')[h - i(uaOnmO - Val nin)/2 (2.18)

where E, is the eigenvalue of the bath Hamiltonian .*%. The
and Trs and TrB represent the traces over the quantum states ne t is to plu n the lt fomioan (c. .)

of the coupled spin system (of I and a) and the bath re- rewrite the denominators back in the form of integrals over

spectively. Denoting the states of I by the latin indices m0o t and express the sum over the bath states (n,n', etc.) as

and m, and those of a by the Greek indices p and v, (2.11) correlation functions forbath operators. We find that the
may be reexpressed as matrix for z- iLs + [Ll(z- iLs -iLa)-La, for a fixed

SL Z 1 set of in0 and nil and within the sub space of a, is block
= m I0n'1IIt"0> 7  exp(-Tfaltnv) diagonal with 2 x 2 blocks at the diagonal. This simplifiesMOM, ZS VVthe inversion that is required in order to obtain the matrix

(niov,nl vI(TrB{eB C(z)})Imovni v'), (2.13) elements for [&(z)],y. However, as is evident from (2.13), we

need focus on the upper left block in (2.18), and thus we find
where Zs is the partition function associated with as. In (displaying only the upper left block) for the matrix of
writing (2.13) we have used the fact that Y*'t is diagonal [U(z)],,:
amongst the states of L

.z + -(aono-a"ml) +.(z.) + )z+
2.2 Resolvent Expansion [ 2

Our strategy is to first evaluate the trace over the bath Det(+oz) L +(z)+ .+(z_) z _(aoin-a,m)

states. Formally,' [q...~tl +(z+) + ,+z ) Z- 2 (i'.4z4nil

TrB[QB&(z)] =[(z)]av = z (1i0Bil> (nl '(z)Iln'l') where the Det(m0,ml) is given by (2.19)
nn'" (2.14)

where In> denotes the occupation number states for the bo- Det(mn0,ni) = z2 + z [ +_ (z_) + + + (z+)
son operators and Inn) the "states" for the corresponding + (Z , + +.. +Z

Liouvillian (see [6]). Developing the interaction term, i.e.
the one associated with the second term in (2.3), as pertur- 12 i
bation and suitably rearranging terms up to the second or- + 4 (aotno-alnml) + 2(ao mo - a, m)
der, we have

[U(+)]z_)]
z - + 1( = (2.15)[ z) -ziLs +[L&(- iLs -iLB)_ Ll]., - [+(z_) + (z+)])}. (2.20)
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'Here the rows and columns are'abelled:by + +, - -, + - Specializing for the moment to NMR, and also for the sake
.and - + respectively, and of simplicity tothe case I = 1/2, we find

(Z) + + a2/4 (2.26)W <()---B,± (0) B±(t)>.. (2.21) 4xz - z z+ 4 F"z)ogsrK),)

3. Discussion of Results
Further, all primed quantities are obtained by replacing the In order to have a more physical appreciation of the re-
argument t by -t, and the hat denotes the Laplace trans- sults given in (2.32) and (2.33) it is useful to consider first
form. It-may be stressed that the angular brackets in (2.21) -certain limiting cases as enumerated below.
denote thermal averages governed by eB and the time de-
velopment of B, (t) is dictated by aB alone. It may also be (i) The Case of Zero Damping: K= 0
noted that in writingthe elements in (2.19) we have kept in
mind the possibility of the hyperfine constant taking two Eq. (2.26) now yields (cf. (2.23))
distinct values a0 and a, depending on whether the state is 4 z 2 + (3.1
m0 or ml. This is particularly relevant in an experiment in- xx (z) z(z2 + + a2)3.1)
volving the M6ssbauer effect wherein the states mo and in,

refer to the ground and excited states of the nucleus. On the On the other hand, zero damping implies also that the spin
other hand, in the case of magnetic-resonance or angular system is totally decoupled from its surroundings, in which
correlation experiments, a0 = a, = a [4]. case the Hamiltonian in (1.3) is reduced to

Using the correlation function for the bath variables
within the Ohmic dissipation model we have shown earlier Y = a Isis - -1-,oa,.. (3.2)
that [6]

Eq. (3.2) allows for a directcalculation of the correlation
+(z) = _ .(z) - (z) = F(z) exp(inK), (2.22) function in (1.4), which, after some straightforward algebra,

(z) = .+ (z) - (z) = F(z)exp(-inK), leads to (3.1).

(ii) The Overdamped and High Temperature Case
where In this limit it is expected that the effect of coherence

(contained in the tunneling term in (2.3)) would be com-

F z l t 21t 2K2-, F(i -2K) (K+zhfl/2n) pletely washed out, leading to total incoherence. Another
Fz= % D ) f'1 - i/way of saying the same thing is to look at (1.3) and argue

F) hlD T(l -K+zhl2t) (2.23) that in the present situation, the system-bath coupling would(2.23) move the spin in the x-direction, i.e., a,,, so rapidly that its
effect would be averaged out. This phenomenon is, therefore,

F' in (2.23) denotes Euler's gamma function. very similar to "motional narrowing" in magnetic resonance

[3].

2.3 Results for the Correlation Function If the effect of the tunneling term disappears from (1.3)

It is evident from (2.13) that the quantity of central im- one is left with just a "static" Hamiltonian:

portance is the matrix elements of the averaged time-devel- Ye = !a Ia, + Z hojb'bj. (3.3)
opment operator that may be denoted as 2 j

I I1 It is now rather trivial to calculate directly the correlation
Gmo,,,,(Z) - exp 2flalmn, (mvmi, v function of (1.4) and one obtainsZ 5  \2 /(2.24)

T ) , (2.2 (z4 1 (exp(-af/4) exp(afl/4
8cosh(af/2) z + ia/2h + z - (3.4)

A knowledge of G,,,m,(z) is adequate for evaluating the line It i, -uot so easy to show how the general expression of (2.26)
shapes for different kinds of hyperfine spectra [4]. After a reuuces to (3.4) analytically, but it is certainly possible to
bit of algebra we obtain demonstrate this fact numerically, as exhibited in Fig. 1.

G, 1, (z) = +( (aoo - aun,)2/2 - (aonzo - a,,,,) (F(z+) - F(z))sin(rK) '

2 z + 2(F(z+) + F(z_))cos(tK) (2.25)

4- +2(z +itanh (aomo ain) - ai -i)F2[4+2+2z(F(z+) +F(z_))cos~irK) + (aoo - almj)2- (aoyo - alinOl(F(z+) -F(z_)) sin(:tK)"
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3.0 - where

4 o( 2r 'o27 K-1 r(1-2Qr(K) cos(itK).,)=D \h#D C-K)

(3.6)
2.0,

In this limit it is reasonable to argue that the physics of the

problem is equivalent to that described by an effective sto-
chastic model Hamiltonian:

1.0 (t) / (t) (3.7)

/\. ,. ',

where I(t) is a two-state jump process having two possible
values + a/2 and - a/2. Such a process is a special class of

0.0 '.e - .d -.tb. ' . Markov processes and leads to a lineshape expression that

Fig. I w agrees completely with (3.5) [4].
NMR lineshape based on (2.26). For convenience we have intro-
duced a new temperature T = 2n/h, The Laplace transform vari-
able z is cet equal to io + r12 where r hasbeen fixed at 0.4 in (iv) Numerical Plots
order to account for a possible instrumental width. The temperature
r is fixed at,5, AO at 0.25, a at 1.0 and the cutoff D at 100. We plot Finally we present, in Figs. I and 2, a series of plots based
the lineshape 1(m) -i C (z). The solid line corresponds to K 0.2, on numerical computations of (2.26) in various domains of
the dashed line to K= 0.05 and the dotted line to K 0.01 interest, most of which have been covered already under

(i)-(iii) above. As one can see, very weak damping leads to
three resonance lines, the central peak corresponding to an
effective field component the nuclear spin I "sees" in the x-

, t direction. When the !emperature increases this component
oo I disappears because of incoherence. Finally, as damping also

gets to be large the two reasonance lines get completely
"motionally narrowed".
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Low-Temperature Tunneling of Hydrogen in Nb(OH)x and Nb(NH)x
H. Wipf

Institut fir Festk6rperphysik, Technische Hochschule Darmstadt, HochschulstraBe 6, D-6100"Darmstadt

Diffusion / Neutron Scattering / Quantum Mechanics / Tunneling
Hydrogen interstitials in Nb are trapped by 0 or N impurity atoms below -160 K. The trapped hydrogen
occupies two nearest-neighbor tetrahedral sites. It represents, therefore, a model system for experimental
studies of the tunneling dynamics of a particle in a double-well potential. The tunneling dynamics of the
trapped hydrogen was investigated by neutron spectroscopy -in the temperature range between 0.05
and 160 K. The experiments demonstrate the transition from a low-temperature coherent tunneling
(T 10 K) to an incoherent jump diffusion at elevated temperatures (T> 10 K). Up to -60 K, both
coherent tunneling and jump diffusion is controlled by a nonadiabatic coupling of the hydrogen to
conduction electrons (Kondo's coupling constant K = 0.055 ± 0.005). Above -60 K, the jump diffusion

of the hydrogen is increasingly dominated by an interaction with phonons.

1. Introduction tigated in recent years (see [4,5,9,11 -18], and references

The decisive role of tunneling in low-temperature diffu- therein). The experiments were performed in the temperature

sion processes of hydrogen interstitials in metals is well es- range between 0.05 and 160 K, and on Nb samples with

tablished since more than two decades [1,2]. This holds O-H or N-H pair concentrations up to 1.1 at%. They

especially for hydrogen diffusion in bcc metals such as V, demonstrate, at -10 K, the transition from a low-temper-

Nb,and Ta where the distances between the (tetrahedral) ature coherent tunneling with two well-defined and ener-

interstitial sites occupied by the hydrogen are smaller (about getically splitted eigenstates (inelastic neutron spectra) to an

1.1 A) than in most of the other metal-hydrogen systems. incoherent high-temperature jump diffusion of the trapped

The tunneling matrix elements of the hydrogen are, there- hydrogen (quasielastic spectra). The observed tunneling dy-
fore, particularly large. An important progress in our un- namics is, up to -60 K, consistently and quantitatively

derstanding of the tunneling dynamics of the hydrogen was described solely by a nonadiabatic interaction between the

the recent observation that this dynamics is strongly affected conduction electrons and the hydrogen (the adiabatic inter-
by a nonadiabatic interaction with the conduction electrons action with phonon modes effects only a temperature-in
of the host metal. This nonadiabatic effect, which is ignored dependent renormalization of-the tunnel splitting). The di-

within the conventional adiabatic or Born-Oppenheimer ap- mensionless Kondo parameter, which characterizes the

proximation, means specifically that the tunneling dynamics strengh of the nonadiabatic interaction, was determined to
of the hydrogen interstitials in a metal cannot be explained be K = 0.055 + 0.005. Above - 60 K, finally, the adiabatic
by solely considering interatomic lattice potentials. The non- influence of the phonons becomes important and dominates,
adiabatic influence of conduction electrons on the motion in fact, the tunneling dynamics of the hydrogen.
of the interstitial hydrogen was first demonstrated 1984 in The trapping of H in Nb by 0 or N impurities - and
low-temperature ultrasonic experiments on hydrogen in Nb thus the formation of 0- H or N - H pairs - provides a
by Wang et. al. [3]. In the same year, nonadiabatic elec- unique possibility of investigating transport processes of hy-
tronic effects were also proposed by Kondo and Yamada drogen interstitials in metals even at low temperatures
[4,5] as a mechanism to understand the previously unex- where, in the absence of traps, the hydrogen is immobile
plained temperature dependence observed for the diffusion because of precipitation [19,20]. The transport process in
rate of muons in Al and Cu (the muon can be considered this case is a coherent tunneling or an incoherent (local)
to represent a light hydrogen isotope). jump diffusion of the hydrogen between two neighboring

This paper summarizes the results of recent neutron spec- tetrahedral interstitial sites that form the double-well po-
troscopic measurements which investigated the tunneling of tential in which the trapped hydrogen is located. It is worth
hydrogen interstitials in Nb which were trapped below pointing out that such a locally resticted transport process
--160 K by (immobile) 0 or N impurity atoms under for- is described by the same theoretical concepts as ordinary
mation of 0- H or N- H pairs [6-10]. In this case, the long-range diffusion. Further, the fact that Nb is a super-
trapped hydrogen occupies a double-%%ell potential which conductor with the (relati el)) high transition temperature
consists of two neighboring tetrahedral interstitial sites of 9.2 K will be found of great advantage for the present
whith a.distance of -1.17 A. The tunneling of the trapped experimental investigation.
hydrogen in Nb represents, therefore, the simplest situation An important aspect of the tunneliag behavior of the
possible for a quantum transport, namely that in a double trapped h)drogen is the ocurrence of an ab)mmetr) energy
well potential. It is, at the same time, the situation for whi,.h between the two interstitial sites of a gien hydrogen inter-
the influence of nonadiabatih effects %Na intensixel) inxes- stitial due to iandom tstati,.j lattke strains indu-.ed by sur-

Ber. Bunsenges. Pip. Chem. 95 41991,, Ao. 3 , CH I erldyaSVxLhqJt inbH. 11-6940 11 vinhun, 1991 (Jt5-A021, 103)3-0438 S 3.50 t.:5,0
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rounding O-H or N-H pairs [21,22]. The asymmetry influence of nonadiabatic electronic effects since phononic
energies increase with rising pair concentration, and they effects are, not expected to depend noticeably on the elec-
reach typical values of several meV for concentrations in tronic state.
the at % range [22]. The influence of the asymmetry'energies For a quantitative discussion of the results, the measured
will explicitly be considered within the discussion of the spectra were fitted to a scattering law that presupposes a
neut'ron spectroscopic results. coherent tunneling of the hydrogen because of a delocali-

zation between its two interstitial sites [6,9,13-18]. The
2. Samples and Experimental Deils two relevant fit parameters were the temperature-dependent

The measurements were carried out on three Nb(OH), tunnel splitting j(T) between the two eigenstates of the hy-
-samples with x = 0.0002, 0.002 and 0.011, and on three drogen and a (temperature-dependent) relaxation rate y(T)
Nb(NH), samples with x = 0.0005'and 0.004 (two samples). which describes the (reciprocal) lifetimes of these states. TheTb(heehiuspe sampleswith = prpara0.00(ton ampanales). damping characterizes also the broadening of the inelastic
The techniques applied for sample preparation and analysis o' the spectra.
are described in [6,7,10,22]. The neutron spectra were
taken with the time-of-flight spectrometer IN 6 at the In-
stitute Laue-Langevin in Grenoble. 0.24 .

I-x TT -
0,2K OT 43K OT 0.22 ,

0 0.20

0.7 T VT_1253
o .
in 00.

-04 0,0 0.4 -04 0,0 04 .. 0.3
neutron energy gain [meV I E

Fig, I
Neutron spectra of a Nb(OH)k0 sample at 0.2 K (a) and 4.3 K
(b) [6,9?. For both temperatures, the spectra were taken in the
superconducting (OT) and normal conducting (07T) electronic state. 0.2
The thick and the thin solid lines represent fit curves for the total NT. /
and the inelastic scattering intensity, respectively, The broken lines -T
are for the elastic intensity

3. Experimental Results and Discussion 0.1

3.1. Coherent Tunneling Regime Below -10 K
Fig. I presents four neutron spectra measuredfrom the .........

Nb(OH)o.Ow. sample at 0.2 K(Fig.la) and 4.3 K(Fig.lb) [6]. 0 I I " I

Both temperatures are well below the superconducting tran-

sition temperature of 9.2 K for the investigated sample. For 0 2 4 6 8
this reason, spectra could be taken in both the supercon- T (K)
ducting and the normal conducting electronic state where Fig. 2
the latter state was achieved by application of a ma Tunnel splitting J (a) and relaxation rate , (or damping 21;-) (b) inmagnetic a plot versus temperature [6,9]. Triangles and circles are the results
field of 0.7 T. The top and bottom spectra in Fig. I represent for the NbtOH), samples with x = 0.0002 and 0.002, respectively.
the results for superconductivity (OT) and normal conduc- ruUi data points indicate normal conductivity, and open data point:
tivity (0.7T), respectively. It can be seen that both spectra are for superconductivity. The solid and broken curves are ex-
taken in the -superconducting state show a clearly identifi- plained in the text The dotted cur%e represents an inhomogeneous
able inelastic line at -0.2 meV. This demonstrates a coher- contribution to the relaxation rate [6]
ent tunneling behavior with two well-defined eigenstates due
to a delocalization of the hydrogen between two interstitial Fig. 2 compiles the fit results for JT) and , iT) a. ob-
sites, and a value of J, 0.2 meV for the (renormaliz-d) tained in the temperature range belovv 10 K for tmo
tunnel splitting between the tio states. In the normal con- Nb(OH), samples "ith A - 0.0002 and 0.002 [6] in a plot
ducting state, the inelastic lines shov% a center shift and a veraub temperature. The open and full data points dibcrim-
broadening at 0.2 K, a ad a transition to an almost quasi- inate betvvecn results derivcd in the superonducting and
elastic behavior at 4.3 ". These distinct differences betvveen normal condukting btat,. iespectivelN. In the louv-tempera-
superconductiit) and normal conductivity demonstrate the ture limit T , 0 X, the tunnel spitting is found to be
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J,(0) = (0.226±0.004).meY for the superconducting and Jn (0) = (0.202 ± 0.003) meV for T-- 0 K in the normal
J (0) = (0.206 ± 0.003) meV¥for the normal conducting state. conducting state.
The'latter quantity shows an additional renormalization (re- The experimental results presented so far applied to hy-
duction) by 9% due to the presence of the normal con- drogen tunneling in Nb(OH) samples in which'the hydro-
ducting electrons. The relaxation rate y(T), on the other gen was trapped by 0 impurities. Fig. 3 shows a comparison
hand, is distinctly larger in the normal conducting than in of neutron spectra obtained at 1.5 K from the Nb(NH)0 0o5
the superconducting state, and the Nb(OH)0ooO2 sample (both samples were in the su-

It is demonstrated in [6,9] that the dependence of both perconducting state) [10]. The data show that the tunnel
J(T) and y(T) on the temperature and the electronic state splitting of the hydrogen which is trapped by N is signifi-
can quantitatively be described by the theories developed in cantly smaller than that of hydrogen trapped by 0. This
[9,13-18] for a nonadiabatic interaction with the conduc- indicates - similarly as a previous study on C traps [23]
tion electrons. The interaction with phonons is considered - that the respective trapping impurity influences notice-
to cause only a temperature-independent renormalization of ably the lattice potential and, therefore, the tunnel splitting
the tunnel splitting which is identical for both electronic of the hydrogen interstitials.
states. A quantitative description requires further the knowl- The thick solid lines in Fig. 3 are fit curves to the data
edge of the temperature-dependent electronic energy gap which allowed the determination of the tunnel splitting J, (0)
A8 (T) which~was assuned to behave according to BCS the- for T-+ 0 K in the superconducting state [10]. The results
ory (for Nb, the zero temperature energy gap is g(O) = for this quantity were J,(0) = (0.165 ± 0.004) meV and
1.53 meV). The results of the above theories are indicated J,(0) = (0.2222 ± 0.004) meV for hydrogen trapped by N or
in Fig. 2 by broken and full lines for the superconducting 0 impurities, respectively [10]. The result for the 0 traps
and normal conducting state, respectively. Particularly at agrees excellently with that of the previous studies [6,9]
low temperatures, where the experimental accuracy is high, discussed above whereas, for the N traps, the tunnel splitting
the theories can be seen to provide a good description of is found to be about 30% smaller. The value of J,(0) in the
the experimental data. case of the N traps is, however, very close to that one re-

The Kondo parameter derived from the data in Fig. 2 is ported recently for hydrogen in Nb that is trapped by C
K = 0.055 ± 0.005. We point out that the complete theo-
retical description as shown in this figure requires only
one additional parameter, for instance the tunnel splitting

10 K
2

(ct) l NbINH6=.0oo5
T1.5K 0.......

2 X5.9 A
22.5 K

.2 U

0 0

o 0j 30 K
(b) J J Nb(OH)o.o0002  2

15.1 A

.C 
145 K

2
0
-0.6 0 0.6 0 *--~ " ___

-0.6 0 0.60

neutron energy gain [meV] 0.6 0

Fig. 3 neutron energy gain [meV]
Neutron spectra taken at 1.5 K (superconducting state) from the Fig. 4
Nb(NH) 0OO5 (a) and the NbtOH, (b) sample £10]. The thi,,& Quasielast. neutron pe.tra of the Nb(OHK,,, sample [7,9] The
and the thin ulid lines [eprebent fit ,uL%%; fui the tutil and the thik and the thin olid linves repie-cnt fit .urcs fui the total and
inelast, ,.Attwring itenasit, respetive1 . The biuken hnes Atr fui thL nclast,. si.attewiig intcuiit, rc pc'ti cly ThL bioukn lines are
the elastic intensity for the elastic intensity as given by the measured V resolution
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impurities [23]. We shall see later that a smaller tunnel -

splitting will be reflected; At higher temperatures, by a cor-
respondingly lower j~mp rate-of the trapped hydrogen. _ 1011

3.2. Incoherent Jump Diffusionabove - 10 K
Fig. 4 presents four neutron spectra obtained from a

Nb(OH)0,02 sample in the temperature range between 10 and *
145 K [7,9]. The spectra denionstrate clearly a quasielnastic
behavior as expected for an incoherent jump diffusion proc-..-"
ess of the trapped hydrogen. Since the temperature range
discussed in this Section is above the superconducting trah- 1010

sition temperature of 9.2K, experiments could only be car- 1 " 0 100 200
ried out in the normal conducting electronic state. 10 100 200

The transition from a low-temperature coherent tunneling t m p e r a u r fKI

behavior to an incoherent jump diffusion process at higher Fig. 6Jump rates v(T) of the hydrogcn in three NbtNHh samples with
temperatures is theoretically expected. The transition tern- x = 0.0005 (squares) and 0.004 (circles and triangles) [10]. For
perature defined in [13] is the temperature at which the further details, see text
curvature of the scatiering law changes, at zero energy gain
of the neutrons, from a positive to a negative value. Ac-
cording to the experimental results for the Kondo parameter r at cpl 0 erie n the asmon ai) of aole
K and and the tunnel splitting J as described in the previous nonadiabatic coupling between the hydrogen and the con-
section, the transition temperature is theoretically calculated duction electrons and (ii) of a vanishing asymmetry energy
to be II K [-7,13]. c between the two interstitial sites of the hydrogen (i.e. for

e = 0). In thise case, the jump rate v(T,c = 0) is given by
[7,9,11-13,16-18]

2.10 11 1(C O = I F '(K) Jn ( 21tkBT \K -1 (lol= 2 r(1 - K) h (1)

N

where F(x) denotes the.gamma-function.-For hydrogen that

9 5101 -is 
trapped by'O impurities, the foregoing discussion yielded

- a Kondo parameter K = (0.055+ 0.005) [6,9]. Since this
- " quantity is not expected to vary significantly with the typeI"of of the trapping atom, it was assumed that this result is also

2.1010 valid in the case of N traps,
The quantity J, (0) in (1) describes the tunnel splitting in

the limit T--,0 for- a normal conducting sample. For the
1010 samples in which the hydrogen was trapped by 0, the cor-

10 20 40 60 100 200 responding result J, (0) = (0.206 ± 0.003) meV was directly
obtained from measurements in which these samples were

temperature [K ] normal conducting because of the application of a magnetic
Fig. 5 field. The measurements in which the hydrogen was trapped
Jump rates v(T) of the hydrogen in two Nb(OH), samples with x by N, on the other hand, were carried out on a supercon-

0.002 (circles) and 0.011 (triangles) [7,9]. For further details, see ducting sample (Fig. 3). However, we can calculate the tunnel
text splitting for normal conductivity from its value in the-su-

perconducting state and from the Kondo parameter K
The jump rates v(T) extracted in the temperature range [6,15,17,18]. Using the value J,(0) = (0.165±0.004) meV

above 10 K from measurements on two Nb(OH), samples for the superconducting state, wve find from such a calcula-
with x = 0.002 and 0.011 are compiled in Fig. 5 [7,9]. Fig. tion an about 10% smaller tunnel splitting J(0) = 0.148
6 shows jump rates accordingly determined for the three meV for normal conductiit) in the case of hydrogen that
Nb(NH)x samples [10]. The analysis yielding the data in is trapped.by N impurities.
Fig. 5 and 6 i., described in detail in [7]. It wvill, therefore, The above valucs for K and the tunnel splittings J,(0)
be discussed only -briefly \Nithin this paper. However, it is alloN the calulation of the jump rate v(T,k. = 0) according
pointed out that the explicit 4Lonsideration of the asymmetry to (1) %Nithout any further adjustable parameter. The results
energies & is important for the data analysis. of this calculation are show a by the solid lines in Fig. 5 and

The results in Fig. 5 and 6 are summarized as follows. 6. The jump rate i(T,= 0) is, act.ording to t), proportional
The solid lines are the theoretial predktion for the jump to T"r ', it dectreaes, therefose, Nith rising temperature.
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The full data'points in Fig. 5 and 6 indicate jump rates negligible asymmetry energies if an asymmetry actually does
T, that were obtained from the neutron spectra under the exist [7,11,12,17,18]. This means that the data above 60 K
invalid (see later), assumption that the random asymmetry in Fig. 5 and 6 cannot be explained by a (sole) nonadiabatic
energies a between the two interstitial sites of a hydrogen interaction with conduction electrons since the differences
interstitial can entirely be neglected [7]. Below - 60 K, these between experimental data and theoretical prediction there
jump rates decrease in both Fig. 5 and 6 with rising tem- would actually even increase if we would account for asym-
,perature as theoretically expected. Their absolute value is, inetry energies. We conclude, therefore, that phonons begin
however, smaller than that of the theoretical predictoin for to dominate the jump rate of the hydrogen in the temper-
v(T,c = 0) (solid lines in Fig. 5 and 6). The jump rates 9 ature range above -60 K. The phonons are, then, also re-
exceed, on the other hand, the theoretical prediction for sponsible for the fact that, above - 60 K, the jump rates f
temperatures above ,- 60 K, increasing, at the same time, in Figs. 5 and 6 increase with rising temperature.
with rising temperature. The present work was financially supported by the Bundesmin-

,Up to now, we did not consider the influence of the asym- isterium fir Forschung und Technologie.
metry energies a in our analysis. A consideration of these
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Tagungen der Ldsung chenischer Probleine" Vom 21.-26. Juli 1991, University of
Deutschen Bunsen-Gesellschaft Erste JahresliI~ilfte 1991 in Berlin. Durham.Wissenschaftliche Vorbereitung: H. Auskunft: Dr. M. J. Richardson, Natio-
Hauptversanunlung 1991 - Theina. ,Py Baumg~irtel, Berlin und F. Hensel, Mar- nal Physical Laboratory, Teddington,
sikalisch-chemn. Aspekte diinner Schichten" burg. Middlesex TWI I OLW.

Vom 9. bis 11. Mai 1991 in Bochum. 50. Bunsen-Kolloquitan - Themna. ,,Phy- Faradlay Division of The Royal Society of
Wissenschaftliche Vorbercitung' H sikalisch-chenische Grundlagen der Pro- Chenitry tuh Polymer Phyics Group -

Cherdron, Frankfurt am Main, G. Ertl, tein-Iunobilisierung bei Biokatalyse und "Biennial Mieeting"
Berlin, H. Occhsner, Kaisersiautern und Biosensoren" (Arbeitstitel) Vom 9.- 11. September 1991, Univer-
K. G. Weil, Darmstadt. Wissenschaftliche Vorbercitung: K. sity of Leeds

(Siehe auch Programin in Heft 2/91). Sch~geri, H-annover. Auskunft; Dr. M. J. Richardson, Natio-
Hauptversamnlnung 1992 - Theina. ,,Fest- "81h International Comjference on Fourier nal Physical Laboratory, Tcddington,
k~rper: Thierinodynamnik, Struktur und Bin- Transform Spectroscopy" des Deutschen Middlesex TWI I OLW.
dung" Arbeitskreisesfiir Angeivandte Spektrosko- Faraday Division of The Royal Society of

Vom 28. bis 30. Mai 1992 in Wien. pie in der Fatlhyruppe Anal)tislze Cheinie Chenstr) uith Colloid and Interfate
Wissenschaftliche Vorbereitung. R. der Gesellsthaft Deutsther Chenfikter witcr S~ienLt Group - "Adsurptwi of Surftk-

Hoppe, Glel3en, K. L. Komnarek, Wien, A. d~er Schirinherrschafi der Deutsche: Bun- tants and Polymers"
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Won 10. - 12. September 1991, Un- Vain 17.-22. August 1991, Budapest, Copermecla onspectlity Polymer (SP):
iversity of Bath,- Ungarn. Sueiradolecu r SectufPoe rSn

Adskunft:-Dr. W.-D. Cooper, Shell Re- Auskunft: Hungarian Academy of thesi and Pymer i Struture r91
searclr-Ltd:, Thornton Research Centre, P. Scecs.at. .Pnotr4 elr, Mainz.
0. -Box 1, Chester CHI 3SH. H-i1111 Budapest.. Auskunft: Butterworth Scientific Ltd.,
Faraday-Division of-The Royal Society of 8. International Conference on Fourier Conference Organizer, P. 0. Box 63, West-
Chemistry with Polymer Physics Group and Transform Spectroscopy bury House, Bury St., Buildford, Surrey

-' the- hstitute-of- Marine Engineers - "Po- Vomn L-6. September 1991, Trave- GU2 5BH, UK.
lymers in a Marine Environment' munde.

Vom-23. - 25. Oktober 1991, London Auskunft: Gesellschaft Deutscher Che- Energy Efficiency Measures
Auskunfft: Rhian Bufton, Conference miker, Abteilung Tagungen, Postfach 90 Oktober -1991, Ljubljana, Yugoslavia.

PraieIsiueo aieEgnes 04 40, 6000 .Frankfurt/Main 90. Auskunft: United Nations, Energy Div.
The Memorial Biulding, 76 Mark Lane, 6. European Electromagnetic Structures Economic Commission for Europe, attn.:
London EC3R 7JN. Conference F. Romig, Palais des Nations, CH-1211I

Vomn 4.-6. September 1991, Friedrichs- Geneva 10.
hafen. Third European Forum Eurospore 91

VersammIungen und Veranstaltungen Auskunft: Dormer Luftfahrt GmbH, Vomn 6.-8. November 1991, Hyeres,
,,Eerievrsrguig- Dienstleistung fir Dep. SN 10, z.H. Dr. J. Wiedmann, P. 0. France.

ratEnegieversorgeunig " Box 13 03, 7990 Friedrichshafen't. Auskunft: Eurospore 91, Association
ratone2.-3 E Maritzg' 191clese st European Metals Conference on "Non- Bernard Gregory, Universit6 de Toulon et
Vomuft 2.-3. Mai 1991, Sebliersee. ferrous Metallurgy" d u Var, BP 132, F-83957 La Garde Cedex.

su nft:em VDE-Zntrstenllee Tagun0en Vomn 15.-20. September 1991, -Brus-
und emiare Stesemnnalee15,600 3rd International Symposium on Trends and

Frankfurt/Main 70. Auskunft: Geselisehaft Deutscher Me- New Applications in Thin Films
33. JUPAC Congress of Pure and Applied tallhitten- und Bergleute, Postfach 10 54, Vom, 25.-- 29. November 1991, Stra3-
Chemistry 3392 Clausthal-Zcllerfcld. burg.

46. Bunsen-Kolloquium

,,Kinetik von Eiektroneratransferreaktionen in Lisung"

Das 46. Bunsen-Kolloquium, vom 26.,bis 28. September 1990 in Erlangen, hat grol~en Anklang gefunden. Die Vorbereitung
lag in den Hiinden von Priv.-Doz. Dr. G. Grampp. Besonders haben wir uns fiber die Teilnahmc russischer Wissenschaftler
gefreut, die einen grolen Beitrag zu den Diskussionen lieferten. In vielen pers6nlichen Gespriichen kam die Hoffnung zum
Ausdruck, emn solch erfolgreiches Kolloquium in ca. zwei Jabren zu wiederholen. Diesen Wunsch iiulerten brieflich auch
amerikanische Koltegen, die nicht an dern Kolloquium teilnehmen konnten.

Wissenschaftlich im Vordergrund standen diejenigen Themen, die auch derzcit in der Fachliteratur hieftig diskutiert werden.
An erster Stelle ist hier die Diskussion des dynamischen Einflusses von L6sungsmitteln auf die Kinetik von Elektronen-
,transferreaktionen zu nennen. Dieser EinfluB wird dadurch vorausgesagt, daB gewisse L6sungsmittcleigenschaftcn (Z. B. die
longitudinale Relaxationszeit TO) i prilexponentiellen Faktor der Geschwindigkeitsgleichung auftreten. Beitraige zu dieser
ThemLdik stammten von L. D. Zusman (Novosibirsk), M. V. Basilevsky (Moskau), W. Nadler (Tiibingen) und K. V.
Mikkelsen (Kopenhagen). Mit den experimentellen Ergebnissen dieses L6sungseinflusses befalten sich die Vortriigc Non
P. Suppan (Fribourg), H. Rau (Stuttgart) und S. Farid (Rochester, USA).

Ober den EinfluB von Magnetfeldern auf die Kinetik von photoinduzierten Elektronentransferreaktionen referierten
A. Weller (G6ttingen) und U. E. Steiner (Konstanz). In den Vortriigen von S. Fischer (Miinchen) und T. Clark (Erlangen)
wurden theoretische Gesichtspunkte des Elektronentransfers abgehiandelt.

Mehrere Beitraige befal3ten sich mit experimentellen Methoden. So berichtete J. Daub (Regensburg) aiber bpektroelektro-
chemische Methoden und R. 'van Eldik (Witten-Herdecke) Laber druckabhiingige Untersu,.hungen zum Elektronentransfer.
Oiber Untersuchungen zumn intramolekularen Elektronertransfer berichten K. H. Drexhage (Siegen) und A. Vogler (Regenb-
burg).

10ber die Bedeutung des Elektronentransfers bei der Phatosynthese gaben die Vortra:ge 'von A. Angerhofer (Stuttgart) und
C. C. von Borczyskow'ski (Berlin) 6.nen Einiblick. Beriihrungbpunktc zum Elektronentransfer an Febtkorpern kiangen in
dem Beitrag von D. FaBler (Jena) und D. Meissner (Hannover) an.

Zudem wurden noch Poster zum Thema priisentiert und die Postersession fand ebenfallb grof~en Anklang.
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Auskunft: M. J. Fauvet, S. F. V.-Soc. -von Paldus, Cook, Smeyers u. a. eine er-
Francaise du Vide, 19, rue du Renard, Ausschreibung schbplende Obersicht. Das Themna taucht
F-75004' Paris. in vielen der Beitriige auf. Nicht immer

4th onfr~c Searaion f lhicSoltes An der. Fakultfit ffur Chem 'ie der Ruhr- wird dabei kiar unterschieden zwiscben In-
SJ 4thCneec eaaino oi olts Uiesti ohmiten stabilitfiten, die artifiziell sind und nur des-

Vomn 9.- 13. Dezember, 1991, Smolenice, Professur C3 fur haib auftreten, weil in einer Hartree-Fock
Czecho-Slovakia. Rechnung die elcktronischen Korrelatio-

Auskunft: Dr. Silvia CechovA, Secretary Physikalische Chemnie nen fchlcn (Beispici H2 Molekill bei grot~en
SIS' 91, Kai. jadrovej ch~mie PFUK, kurzfristig wiederzubesetzen. interatomaren Abstiinden) und soichen,

jlnsdln H1 4 5 Bailvdie ,,echt", d. h. auch bei EinschluB von
Mlynkh, o-laiaC ,82 Brtsaa Von deni Bewerber/der Bewerberin korrelationen vorhanden sind (Beispiel:

Czeco-Sovaia.wird erwartet, daB er/sie in der Lage Dimerisicrung in Polyacetylen.)
Conference on Electrochemiical Engineering ist, die Physikalische Chemie in der Neben den normalen SCF Verfahren
and the Environment Lehre in voller Breite zu vertreten. In werden auch soiche mit mebreren Aus-

Vorn 7.-9. April 1992, Loughborough, den wissenschaftlichen Aktivitiiten soil gangskonfigurationen (MC SCF) ausfiihr-
UK er/sic die an der Fakultiit ffir Chemie lich behandelt. So wird fiberzeugend ge-

Auskunft: Dr. R. J. Mortimer, Dept. of vorhandenen Forschungsrichtungen zeigt, daBl MC SCF Rechnungen als Stan-
Chemistry, Univ. of Technology, Lough- im Fach Physikalische Chemic sinnvoll dardmethode zum Verstfindnis von
borough LEI I 3TU, UK. ergiinzen. Habilitation oder gleiehwer- Reaktivitiiten dienen konnen (Robb). Auch

4th International Conference on Molten tige wissensehaftliche Leistungen wer- die~praktische Bestimmung optimaler Or-
Stags and Fluxes den vorausgesetzt. Die Ruhr-Univer- bitale fur SCF und MC SCF Rechnungen

Vom 8.-11. Juni 1992, Sendai, Japan. sitilt Bochum bemuiht sich urn dic F6r- wird ausfiihrlich diskutiert.
Auskunft: Secretariat, Molten Slags & derung von Fratten in Forschung uind Eine Reihe von Bcitriigen befassen sich

Fluxes '92, The Iron and Steel Institute of Lehre. Die Bewerbung gceignetcr mit rcchentechnischen Fortschritten, die
Japan, Keidanren Kaikan, 3rd Floor, 1-9- Schwerbchindertcr ist crwunscht. gemacht wvurden, urn SCF Lflsungen zu

4Otemachi, Chiyoda-ku, Tokyo 100, Ja- Bewerbungen mit Lebenslauf, Publi- nd aegri Hier istdir eta vCF Vrahrenf
pan. kationsliste und Verzeichnis der abge- 7unftseisndbed idisem Fverbesser-

haltenen Lehrveranstaltungen sind bis zkntwied amtdeenvresr
____________________________ 26. April 1991 an den Dekan der Fa- ten Verfahren auch grflfere Moiekiile re-

kultit firChemc dr Rhr-Uivesi- chenbar werden. In dieselbe Rubrik fallen
Vershiekustiit focu, Chefi der 48 Wh-46v3s0 Verfahren zur dirckten numerischen Be-
Verschiednes tiiBochum, Posicteh 018,W43 rechnung von Wellcnfunktionen nach der

Bochm 1 zo ichcn.MC SCF Methode (Hinzc und Biegler-
Kflnig). Ein Verfahren zur direkten Mini-
malisierung der Energie in der Hartree-

Arbeitskreis fur Chemosensoren Fock-Niiherting, d. h ohne vorherigc Be-
Im Rahmen der letzten Bosads.i- ficher rechnung von Orbitalen, wird ebenfalls be-

zung der GDCh.Fachgruppe Analyti- schrieben (rcrn~ndez Rico), Relativistischc
sche Chemie wurde auf Anregung von R. Carb6 and M. Klobukosvski (Eds). inem nren eit ragle behapcln delt(M
Prof, Camman, MiInster, vereinbart. Self-consistent Field - Theory and Appli in ie loalere Bpn-it ehneun fMar
Vorbercitungen zur Grfindung ciic cations, Bd. 70 der Reihec: Studies in Phy l) Die stac wirdineinem sehr schflnen
Arbcitskrciscs ,,Chemosensoren" zu sical and Theoretical Chemistry, Elsevier, Beitra s wbnfld disnuiert (Wehead).ne
treffen, Wegen des interdisziplin~ren Amsterdam and New York 1990. ISBN etaebnlsdikir (heed)
Charakters, der z.B. bei den Bioscn- 0-444-88168-9, 920 Seiten, Preis: Dfl. Sehr klar beschrieben wird die Propagator
soren als einer der Untergruppcn der 560.-. Methode unter Bcnutzung von Superope-
Chemosensoren besonders ausgeprflgt ratoren (Pickup). lnsgesamt sind die An-
ist, soil dieser Arbeitskreis fachgrup- Das vorliegende Buch gibt auf rund 900 wendungen der selbstkonsitenten Felder
pcniibergreifend etabliert werden. Ge- Seiten einen sehr vollstiindigen Oberbliek schwiher vertrcten als die rein methodi-
dacht ist neben einer Mitbeteiligung fiber emn wiehtiges Gebiet der theorcti- schen oder theoretisehen Beitrfige. Die
der GDCh-Faehgruppen Biochemie schen Chemie, niimlich das der selbstkon- Sehwcrpunkte liegen dabei bei den Poly-
und Wasserchemie auch an die Deut- sistenten. Felder. Darunter wild die n~ie- meren (Andr6 und Delhalle) sowie bei den
sche Bunsen-Gesellschaft. rungsweise Bohandlung der elektronischen elektrischen und magnetisehen Eigen-

Wechselwirkung mit Hilfe von gemittelten schaften (Craw et al.). Festkflrper werden
Es wurde bemerkt, daBl die Chemiker Potentialen verstanden. Diese cinschnei- nicht diskutiert. Diese Beispiele mflgen ci-
die Entwicklung und Eignuigsprfifung denide Nflhcrung hat die theoretische Be- nen kicinen Obcrblick fiber den Themen-
von Sensoren zur chemischen Analyse handlung vicler Molekille iiberhaupt erst krcis geben, der im Buch ausfilhirlich be-
nicht allein den Elektronikern oder ih- ermflglicht. Sic dient weiterhin als Aus- handelt wild.
rem Standardisierungsinstitut fiberlas- gangspukikt verbesserter Theorien, vvelche Wie nichi anders zu erwarten, sind die
sen konnen. Auf der ANAKON '91 die Behandlung clcktronischer Korrelatio- verschiedenen Beitrigc von recht unter-
von 22. bis 24. April 1991 sowie auf der nen einschlie~en. schiedlicher Qualitlit. Einige der besonders
niichsten Bunsentagung vom 9. his 11. Das Konzcpt der selbstkonsistenten %vichtigen und klar geschriebenen Abband-
Mai 1991 in Bochum sollen auBerhalb Felder (SCE) ist heute so gut verstanden, lungen %vurden bereits crwvAhnt. Einige der
des Progranims Treffen durchgefiirt und die Amnendungen sind inz~vischen so behandelten Themen sind btark speziali-
werden, auf denen flber die Arbeitsfel- xielseitig, da3 ci umifassender Cberblitk Zsiert, i%il dic Thevrie inzivisdien %%eit ent-
der dieses neuen Arbeitskreises disku- flber das Gebiet %vinschcnsNwcrt ist. Das %Nickelt isi. Su sind z.B. die Arbeiten
tiert werden soil. Der Arbeitskreis fur Bu .h Millt somit cine Laickc. In 23 Beitrii- zur ,Minimailisierung der elcktronis .hen
Chemosensoren soil, Shinlich z. B. del gen %Nerden die verschiedenen Aspckte der Energie durth Cq) e) urthogondle Trans-
Arbeitsgemeinst.hift Massenspektru- Theoric und deren AnNcndungcn beleu.h- furmionen der Orbitdlc im %iesentlithen
metric (AGMS), auch Wisscnbihdftlern tt. Ein /entrdles. Thema ist dabei die Dis- duf eine Gruppe bes%.hr~nkt kPolezzo et dl.)
angrcnzcnder Disziplinen offcabteehen. kussion 'eon Instabilitaten on Hairtree- und untei dcn 25 Zidien finden siLh nut

F ock Lflsungen. Hier geben die Artikel 5 Fremdzitatc. Emn Beitrag, der Verstfind-
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nisschwierigkciten bereitet, ist der von Ya- wurdcn die ersten vier Kapitel (Elcmcnte dcr rnagnetischen Rcsonanz Rechnung
maguchi,,dcr jibrigens voller Druckfehler der Rcsonanz, Grundlagentheorie, magne- und erhbht den Wert des Buchcs als Stan-
ist. Zurn Beispiel enthfilt der Aufsatz die tische Dipolverbreiterung in starren Git- dardwerk ffur alle, die sich intensiver mit
Feststellung, daB HF Rechnungen gezeigt tern, magnetischc Wechselwirkungen von der NMR-Spektroskopic bcschiiftigen
biitten, da die Cu-O-Bindungen in den Kernen und Elektronen) von einigenitz- wollen, erhcbhich. Das sind nicht nur Stu-
neuen Hochtemperatur-Supraleitern nicht lichen Erg~inzungen (quantenmechanische denten, sondcrn auch Experten, die sich
zu den stark, sondern zu den mittelstark Behandlung yon Spinechos, Verschie- zwar laut Vorwort nicht unbedingt angc-
korrelierten Systemen zu zdhlen sind. Hier bungstcnsoren fur Einkristalle) abgcsehen sprochen fiihlen sollen, die aber durchaus
werden offenbar verschiedene Begriffce ver- irn wesentlichen tibernommen. Das gleiche proitiercn kbnncn, urn ihrc thcorctischen
mischt, denn die gemachte Feststellung ist gilt ffur die Behandlung der clektrischen Ken ntnisse bei der Bearbeitung spezieller
sicher nicht richtig. Zusammenfassend Quadrupoleffekte (Kap. 10). Kapitel 5 Probleme aufzufrischen oder zu erweitern.
kann man feststellen, daI3 das vorliegende (Spin-Gitter-Rclaxation und Bewegungs- Urn Leine Mi~verst~indnisse auflornren
Buch semnen Zweck crfiillt und regen An- verengung von Resonanzlinien), das auch zu lassen: Trotz des Vorteils ciner aus-
kiang bei den Quantenchemikern inden den Formalismus der Dichtematrixme- fihrlichen Darstellung der grundlegenden
solite. Es gibt cine absolut kompetente und thode einfiihrt, ist urn einige wichtige Ab- Theorie und des Eingehens auf Einzelhci-
vollstfindige Darstellung cines sehr wich- schnittc erweitert worden, welche Anwen- ten der Rechnungen (auch der urn vier Ab-
tigen Gebiets der theoretischen Chemie. dungen der Dichternatrix behandein. Dazu schnitte erg,,inzte Anhang ist bier zu loben),

P. Fulde gehbrt vor allern die Fourier-Transform- muB3 der physikalische Cherniker solide
NMR. Das Konzept der Spintemperatur Vorkenntnisse in Physik und besonders
(Kap. 6) fand bereits Eingang in die 2. Auf- Quantennmechanik rnitbringen, urn den

C. P. Slicluer: lage und wurde nur unwesentlich crgi~inzt, vollen GenuI3 dieses Buchcs erleben zu
Principles of Magnetic Resonance, 3rd en- Der schnellen Entwicklung verfeinerter k6nnen. Er ist dann aber auch gut gerflstct,
larged and updated ed., Vol, 1 aus der NMR-Methoden in den lctzten Jahrcn anspruchsvolle Probleme, z.B, beim Emn-
'Rcihec: Springer Series in Solid State wurde in den Kapiteln 7 (Doppclreso. satz komplizierter Puisfolgen oder bei der
Sciences, Springer-Verlag, Berlin 1990, nanz), 8 (moderne Konzepte bci der ge- NMR-Festk6rperspektroskopie, anzuge-

ISB 3-40-015-6,655SeienPres: pulsten magnetischen Rcsonanz) und 9 hen.
ISB 89-34. 05-,65SiePes (Mehrquantenikohiircnz) Rechnung getra- Trotz seincr Erweitcrung (auch irn Li-DM89-.gcn, In diesern Zusammenhang werden (lie teraturteil) und des hohien Anspruchs

Als Charles P. Slichter 1963 die erste fOr die Praxis wichtigen Doppelresonana- bleibt der ,,Slichter" in dem Sinne Einfiih-
Auflage seines inzwischen weltweit be- und Krcuzpolarisationsrnethodcn (Over- rung und Lehrbuch, daB er nicht Spezi:7
kannten und gcschiitzten Buches ver6f- hauser-Effekt, Festkbrpereffekt, ENDOR, literatur ersetzen kann oder cinen ber-
fentlichte, kornie noch niernand erahinen, Hartmann-Hahn- und Pines-Gibby- blick Oiber Anwenidungen und Stoffunter-
welche Bedeutung rnagnetische'Resonanz- Waugh-Methode, Spinentkopplung, Spin- suchungen geben mbchte. Daher schadet
methoden in der Chernie und Medizin cmn- echo-Doppelresonanz) diskutiert und cine es auch nicht, wenn naturgemiiB3 die rnei-
mal crlangen sollten. Der damalige Unter- ausffiirliche Einfiihrung in die 2 D-FT- stcn der in den einizelnen Kapiteln disku-
titel ,irnit Beispielen aus der Festk~rpcr. und Bildgebungs-Mcthoden gegeben tierten Beispiele der amerikanischen Lite-
physik" kann fast programmatisch ge- (Kap. 7), Die Theorie der Impulssequen- ratur entnommen sind. Die Chance, bei
deutet werden; denin neben den 2 D-FT- zen, eine unabdingbare Voraussetzung fuir der neuen Auflage SI-Malleinheiten cmn-
NMR-Methoden in LUsung, der EPR- das Verst-fndnis der verschiedensten bei zufiihren, wurde (bis auf die von der 2. Auf.
Spektroskopie und der NMR-Tomogra- der NMR-Spektroskopie auftrctenden lage tibernommene Umrechnungstabelle)
phie, ist es gerade die NMR-restk6rper- Probleme - cinschliefflich Festkorper- leider nicht genutzt.
spektroskopie, die in (len leizlen beiden echo, Erzeugung von dipolarer Ordnung, W. Mfiller-Warmuth
Jahrzehunten durch technisehe und metho- MAS und Multipalsprogramme zur Aus-
dische Fortschritte v~llig neue M~iglich- mittlung bcstinimter Spektralanteile -
keiten zurn Studium der kondensierten wird rormal entwickelt und in ciner Weise Al Su~uk*
Materie auf mikroskopisehemn Niveau er- behandelt, wie sic fur die Erschlie~ung We)- Adsorption Engineering, Vol. 25 atis der
schlossen hat. Urn das heute existierende tergehiender Anwendungen benutigt wird Reih: Chemical Engineering Monographs,
und becindruckende experimentelle (Kap. 8). Schliefflich erliiutert das 9. Ka- Elsevier Science Publishers, Amsterdam
NMR-Potential aber wirklich ausnutzen pitel die physikaliselien Konzepte zumn and Nowv York 1989. 306 Sciten, Preis:
zu konnen, bedarf es intinser theoretiseher Verstehien der Mehrquantenphainomene, 139.- USS.
Kenintnisse der auf demn Gebiet der mna- die heute auf vielen Gebieten der magne-
gnectischen Resonanz tiitigen Wissenseliaft- tischen Resonanz cine Rolle spielen. Monographien fiber Auslegtingsmretho-
lcr und ciner entsprchlenden Ausbil" -ng Als etnes der %vcnigen Lchirbficher der den fuir Adsorptionsapparate sind nicht
unserer Mitarbeiter. Slichters Buch v -'get magnetischen Rcsonanz bezog der ,,Shch- schr zahlreich. Insofern ist dieses Buch
sich nach eigener Aussage an fortgesci,it- ter" %on Anfang an die paramagncitzshe sci zu begrfien, in dem der langjiihrig
tene "Studenten der magnetisclieni Reso- Elcktronenrsonnzspcktroskopic (EPR diuf diesern Teilgebiet des Chernicingeni-
nanz' (Physiker, Chemiker, Materiahvis- bzvv. ESR) in seine liauptsiewhlich an der eurN~esens t~itige Autor die Grundlagen
senschaftler, Biologen, Mediziner) mit cut- NMR-Spektroskopic orientierte Darstel- und die in neuerer Zeit erziclten Fort-'
sprechenden Vorkenntnissen in Quanten- lung ein. Das ist veon der Sa&.he her ver- schritte systernatisch zusammengestellt
inechanik. Anstelle einer erschopfendcn nfinflig, wveil gerade bei der theoretiselien hat.
Darstellung cinzelncr Therren soil der BLhandlung vicle Analogien bestehen, Dic Kapitel Oiber Adsorbentien, Adsorp-
,,Student durch das Butih urbercitet v~er auth %Nenn die Symbulc verb%.hieden bind. tiunsgileihgevN ichte, Diffusion in por~sen
den, Literatur auf diesemn Gebiet lesen zu Aulut bsmnnvollen Erginzurigen uidc an Teikb len und Kinetik cincr chargeni% eisc
kunnen". dieser Stelle emn Abschnitt Ober Elektro- betriebenen Adsorption sind grundlegen-

Schon dcr Umifang spiegelt zu Reidit die nenspineehos aufgcnommen. der Natur Ihnen folgen Kapitel Olber kon-
dramatisthe Entvviklung auf dern NMR- Dab bestensb cingefuhurte und v iel gekibt,; tinihdi betricbcnc ChLountographic-
und EPR-Gcbict %videi. Waiaid die erstu Bu%,h bcdaif eigenth,.h kcinvi neucrlidaei Saiulen, Berec.hnung tun Durdhbru ,hkur-
Auflage (1963) nuth mit 246 Setten aus- Empfehlung. Die Kornpttenz des Auttors VCR bei Adburbcrn, Wa'rrneeffekten b6i der
kam, %varen es bei der z~vcten Auflage als ronsthei und Lehrer prdgt dts Werk Adsoiptionvr m die Regenerationi oin
(1980, erstmals in der 'Springer Serics") und seine Spraehle. Die Neuauflafr, tr.agt Adsvibenuen und sehlmedl.h die Theoric
397 und sind es jetzt 655 Seiten. Dabei der rapiden EntNieklung auf dixi Gebiet dci hiuinatugiaphib.h,;n Trinnung, dct
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Druckwechseladsorption und des Einsat- ist-wcitgehend auf die den Autoren nahe- In cinem Kapitel fiber die Radiolyse or-
ies der Adsorption zumn Energietransport stehenden Gebiete und die angelsiichsische ganischer Systeme werden verschiedene
(Wfirmepumpen usw.) Literatur beschriinkt. Zum Beispiel enthit Verbindungsklassen, wie Kohlenwasser-

Alle Kapitel enthalten viel interessante die-Liste der friiheren Biicher iiber Strah- stoffe, organischc Halogenverbindungen,
und gut verstiindlich-dargestelte, qualita- lenchemic nur-diein englischer Sprache Cr- Alkohole und Ather, Karbonylverbindun-
tive Informationen zur Adsorption, die - schienenen oder iibersetzten. So kommt es gen und stickstoffhaltige Verbindungen
weningleich meist am Reispiel der Aktiv- wohl auch, daB Listen an anderen Stellen beschrieben. Auch hier sprengt der Urn-
kohle demonstriert - fOr den Praktiker nicht vollstiindig sind; z. B. ist in der Ober- fang des Materials bei weitem den Rabmen
wie den Theoretiker von grolem Nutzen sicht der chemischen Dosimeter das Tetra- einer Einfiihrung, wcnngleich die Zusam-
scmn k~nnen. nitromethan-Dosimeter nicht erwiihnt, das menstellungen durchaus niitzlich sind, um

Leider gibt Cs zahlreiche Fliichtigkcits- sich durch die gleichzeitige Dosimetric von cine Ubersicht fiber diese Gebiete, beson-
fehler in demn englischen Text, die bei etwas Optik und Letdhigkeit bei puisradiolyti- desierihrn rbieuehat.
mchr redaktioneller Sorgfalt lcicht zu ver- schen Messungen auszcichnet. Aber auch hier vermil3t man moderne Ent-
meiden gewesen wiiren. Natfirlich wird cin In den ersten Kapitein werden Strahlen- wicklungen: Kein Wort fiber Beweglich-
Kontaktwinkel in grd und nicht in 'C ge- quellen, die Wechselwirkung von Strah- keit, Energiezusti"inde und chemisehe ,Re-
mnessen, Herr Bosanquct heif~t nicht Bo- lung mit Materie, und Dosimetric behan- aktionen von quasifreien und solvatisier-
sanquit und Herr Chang nicht Chiang! delt. Diese Kapitel sind umrfangreicher als ten Elcktronen in diclektrischen Fifissig-
Auch fehit cs manchmal an Detailerliiu- cine ,13infiihrung" erwarten 11-0t. Sie sind keiten. Das Buch schlielt mit-zwei Kapi-
terungen in Abbildungsunterschriflcon, was klar und fOr den Chemiker leicht verstiind- teln Ober Strahleiieffekte in Festk6rpern
besonders st~rt, wenn sic aus der japani- lich geschriebcn. Es folgt dann cmn Kapitel und Angewandte Strahlcnchcmie; auch
schen Originalliteratur reproduziert sind, Ober lonen, angeregte Molekiile und freic hier besteht der Eindruck, daS moderne
da japanisch sicher nicht so aligemein be- Radikale, in dem die wichtigstcn Eigen- Entwicklungen zu kurz gekommen sind. In
kannt ist wie englisch. schaften von kurzlebigen Zwischenpro- Anhang 1 -3 findet man schlie~lich niitz-

Zusamimenfassend. Emn nitzliches Buch dukten der Radiolyse allgemecin beschrie- liche Zusammenstellungen, z.B. Ober die
fOr den Praktiker und den Studierenden ben werdcn. Bci der Auffiilung der ver- Umnrechnung alter Maf~einheiten in neuc
des Chem ici ngenicu rwesens, lcider aber schiedenen Rcaktionstypen freier Radikale des SI-System. In Anhang 4 findet man
voller Fuflangeln. rtlit auf, daB die 0--Obrtragung, die sau- Aufgabenstellungen und ihre LUsungen.

H. Hofmann crstoffreichc Radikale untercinander cmn- Abschliel3end sci gesagt, (laB das Bitch
I-.gehien konen, nicht crwiihnt ist, obgleich als cine iitzliche Erglinzung zu bestehen-

dieser Reaktionstyp bei strahienchemi- den, kiirzeren Einf~hrungen in die Strah-
J. IV'. T'. Spinks, R. J. Woods: schen Versuchen enitdcckt worden ist In lenchemie empfohlen werden kann sowie
An Introduction to Radiation Chemistry, dem folgenden Kapitel Ober Kinetik und als lnformationsquelle Oiber vicle Daten in
Third Edition, John-Wiley and Sons, Inc., experimentelle Methoden werden die0 emn- Teilgebieten der Strahienchemie.
New York, Toronto 1990. ISBN 0-471- fachsten kinetischen Gcschwindigkeitsge- A, Henglein
61403-3, 574 Seiten, Preis, DM 91,45. setze bei homogenen Reaktionen beschrie-

ben, auf inhomogene Rcaktionskinctik
Die zwci frilhcren Ausgaben des ,,Spinks kurz eingegangeii, und dann Methoden
und Wood" erschicnen 1963, d.h. zu einer der Dctektion von Zwischenprodtikten, D. 11. Volnian. G, S. Haninond, K. Goliick
Zeit, in dcr die Strahienchemie in ciner ra- niimlich durch ESR, Blitzphotolyse und (edis.):
santen Entwicklung begriffen war (nicht Pulsradiolyse erwiihnrt. Die Beschreibung Advances in Photochemistry, Vol. 15, John
zuletzt dank dcr Methode der Pulsradio- dcr PLilsradiolyse, immerhin die wichtigstc Wiley + Sons, New York, Chichester
lyse), und 1975, d.h, zu ciner Zeit, in der Methode der Strahlenchemie, kommt hier- 1990. ISBN 0-471-63289-9, 390 Sciten,
diese Entwicklung weitgehend abgeschlos- bei zu kurz weg: Die Anwendung von emp- Preis: £ 74.35.
sen war und die wesentliche Atifgabe in de~r findlichen Leitflihigkeitsmessungen, die Die ,,Advances"-streben keine lfickenlosen
Anwendung strahlenchernischer Metho- gleichzeitig mnit dcr optisehen Detektion Literaturberichte an; statt dessen bieten sie
den auf anderen Gebieten der Chemie be- durchgeffihrt werden k~innen, sowie die Raum ffir griindlichc, auch pers~nlich ge-
stand. WVie wiorde der ,,Spinks and Wood Polarographie kurziebiger Radikale wer- rflirbte, Diskussionien ausgewiilter Berci-90" aussehen? den nicht besclbrieben; man lindet nicht chauf dereii der jeweilige Autor giber

Der Rezensent ist cin wenig cnittiiuscht. cinmal Literaturhinweise aufdihese Metho- chCr ei ebtgeretllit i a
Anstatt das Buch weitgehend umzuarbci- den. plaee Zeit sbes gebitt in t ie Ka-se

te, mdi mdrnnEntwicklungen In den folgenden Kapiteln wird die Ra- pn itel tie Bande sind in. i l esisse
strahlenchemischer Art in den Vorder- diolyse spezieller Systemne beschricben. unrdi nic t ueinne boguae Zie is-
grund zu stellen, mit dmZedsBc wiKptlbhdenieSrlnle- mer. die Einihen mooleuinre Mcha-
Iiochaktuell zu machen, haben die Autoren mie des Wassers (Dampf und Fl~tssigkcit) nismus kennizeichnet, erlijutert der Autor
die alte F'assung mehi oder weniger belas- und wii~riger LUsungen von anorgani- des Ietzten der ffinf Beitrifige des vorliegen-
sen und lediglich auf den neuestcn Stand schen und organischen Substnnzen. Die den Bandes. Die Kapitel sind der Reihec
gebracht. ,,he most conspicuous diffe- Auswnhil des Stoffs ist hier wveitgehcend nuif nach:
rence betwveen this and earlier editions is Systeme beschr~nkt, deren IUatersuchung
the move to SI units", schreibcn sic im vor zwvei Jahirzehnten im Vordergrund 1. Ultrafast Photochemical Intramolc-
Vorwvort. Dcr Rezensent hiitte sich mehr stand. Keine Hinweise auf die Strahlen- ular Charge Transfer and Excited State
,,mooves" gewflnscht! chemie mizellarer Systeme und anorgani- Solvation, von P. r. Barbara und W.

WVie die frfiheren Ausgaben ist das Buch bcher Kolloide, nichts Ober die An% en- Jarzeba, Unincrsity of Minnesota, 68
als Lehrbuch far Studenten zu umrffang- dung '.on Strahiung zui Herstellung von Suiten, 32 Abb., 6 Tab., 150 Referenzen.
reich, weninglcich der Lehrcnde ihim viel Kolloiden, nichts fiber die Wirkung von (Datb Wort Transfer fehit zvvar in der
Material entnichmcn kann Das Buch ent- Kolkniden als Elektionenspeichet bui Cbersh rift, abei bvnbt nidit mehr.) Die
hijlt viele nfitzlichec Informationen, die es M,~hrtlektrin-Cberrragungsriaktwnen Autvi,.n uni,jsbudin den EirifiuO der
cinoem Chemiker m~glich machen, sicli mit fremer Radikale. Der Rezenhent %%are ja LUsungbmittelrulaxativii auf die Dyna-
den Arbeitsmcthodcn und Theorien in dcr s%.hon zufrieden gckxescn, %%enn vinige be- inik vines pholinduzwerien aiinermole-
Strahlenchemie vertraut zu machen und scheidene Literaturhoinweibc auf diebt; seit kulitn Charge-transfvr- kCT-)1Cbcr-
den Weg in die spezielle Literatur zu fin- 15 Jahren inttnbi. b&arbeitcten Gebiete gangs. Prubumulekuile sind suhhe mot
den. Die Auswahl des Stoffs und der Zitate gegeben ivorden w~iren. ,,dalcr Fluureszenz-i, bei denen beide
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angeregte Strukturen, Vor und nach trachtet werden Anthracenophane, bi- Es handelt sich darum, photochemischc
dem CT-ProzeB, fluoreszieren, noch en- substituierte Anthracene, Kronenether Reaktionen in organischien Einkristal-
ger abgegrenzt: bei denen der von Z. R. und intramoleculare Exciplexe. Die auf- len anhand der IR-Spektren der betei-
grabowski 1979 vorgeschlagene Twist- tretenden, z;T. konkurrierenden Reak- ligten Spezies niechanistisch, aufzuklii-
Mechanismus (TICT = twistet intra- tionen sind (41t+42t)- bzw. (4it±2,)- ren. Die Autoren formuliereni zuniichst
molecular CT) angenommen wird,-z. B. Cycloaddition (ca. 40 Verb.), trans-cis- ei_darauf abgestelltes Konzept dcs Be-
Bianthryl. Bcobachtet wird die zeitliche und andere geometrische Photoisomer- grills ,,Mechanismus", schildern die
Entwicklung des Fluoreszenzspektrums isierung (ca. 30 Verb.); sensibilisiertc Vorteile der Vororientierung im Kri-
nach dem Anregungsinipuls auf ps-Zeit- Triplett-Reaktionen. stall und die durch die Matrix beding-
skala, in Abhiingigkeit von L,6sungs- Der Artikel faBt im wesentlichen Ar- ten Abweichungcn von Gas-- und L6-
mittel und Temperatur. Die Diskussion beiten der Autoren aus den letzten 10 sungsreaktionen (StreB, Deaktivierung).
geschiehit auf der Basis eines (erweiter- Jabren zusanimen; sic bekiagen sich et- Es folgt cine Aufziihlung der wichtig-
ten). Debye-Onsager-Modells der Sol- was, daBl emn Referent die frfihere Pu- sten Probenparameter und Mel~techni-
vatation und einer vereinfachten Lan- blikation einiger neuer Verbindungen ken, insbesonderc der Fouriei-Trans-
gevin-Gleichung far die Kopplung an verhindert hat, k6nncn dafiir aber jetzt form IR-Spcktroskopie, bis in prakti-
eine ,,charakteristische" Solvat-Koor- mehr davon vorlegen. sche Details. Fast alles wird mit
dinate. Es wird versucht, die Elektro 4. Photophysics and Photochemistry of Beispielen aus der Forschung der Au-
nen-Tranisfer-Zeit von 9,9'-Bianthryl Phytochrome, von K. Schaffncr, S.E. toren belegt, niimlich der Photolyse von
init der Solvatationsrelaxationszeit von Braslawsky und A. Holzwarth, MPI ffur Fettsiiure-diazyl-peroxiden. Das freige-
Cumarin im jeweils gleichen (polaren) Stalnhme ilemad ur 8 setzte CO2 ist eine ideale IR-Sondc. In
Uisungsmittcl zu korrelieren. Setenhmc 24lhi Abb., 161r Ref Kombination mit ESR-Daten wird zumn

2. Atomnspheric Reactions involving H-y. Neben der Photosynthese unterliegen Schlu3 emn plausiblcr Mechanismus for-
drocarbons: ETIR Studies, von H. Niki, Pflanzcn und. Algen noch cinigen an- muliert.
York University, Canada, und P. D. deren lichtgesteuerten Reaktionen; so Alle ffiinf Kapitel des Bandes erffillen, mit
Maker, Ford Motor Company, Dear- reagieren Wachstum und morphologi- verschiedcner Gewichtung, die Ansprilchc
born, Michigan, USA; 68 Seiten, 25 sche Entwicklung in charakteristischer der Scrie. Da sic nicht cinige brandneue
Abb., 159 Ref. Weise auf Wechsel der spektralen Ver- Resultate, sondern den aktuellen Stand ei-
Der Artikel zeigt an z.T. noch nicht pu- teilung und lntensitlit des Lichts. Der nes Bereiches darlegen sollen, fragc ich
blizierten Beispielen die experimentel- hicrbei wichtigste Rezeptor ist Phyto- much aber, ob es nicht doch muiglich wiirc,
len Voraussetzungcn und den Nutzen chrom, cmn offenikettiges, konjugiertes in einem solchen Band jeweils cinige sich
der IR-Spektromctrie bei kinetischen Tetrapyrrolsystem mit ciner exo-Dop- inhaltlich nmihcr stehende Gebiete zu ver-
Untersuchungen der Reaktionen von pelbindung, kovalent an cmn bestimintes cineni.
Kohlenwasserstoffen mit Radikalen Cystein in ciner Proteintasche gebun- F'. Dbrr
(HO1, HOO, R, RO, ROO u.a.) in einer den. Die Unigebung erm6glicht ver-
Modellatmosphifirc. Ergebnisse werden schiedene Konformationen und proto-
vorgelegt ffir A. Methan (CH10 2; mere Formen mit jeweils charakteristi-
HCHO, HO + CO; HO + CH300H); schen Absorptions - und Fluoreszenz- Zur Besprechung eingegangene Bucher
B. Ethan und h6here Alkane (C2H$02; spektren. Grundfragen sind die Zuord- H. D. Roth, G, J. Kavarnos, F. D.
CH3CHQ; CH-3C(O)0 2; R02, R _ C4; nung von Spcktrumn und Moicki- Sacva, E. Krogh, P. Wan, L. Lopcz,
C. Alkene und Alkine (HO-, 03-, NO3- zustand und die Mechanismen von H.-J. Timpe, D. F. Eaton: Photoinduced
initiierte Reaktionen; photoinduzierten und thcrmischen Electron Transfer , Vol. 56, aus der Reihe:
D. Aromaten: Oxidation; ungesfittigte Umlagerungen; praktische Probleme Topics in Current Chemistry, Springer Ver-
1,4-Dicarbonyle. sind die Prilparation cinheitlicher Pro- lag, Berlin, Heidelberg, New York, ISBN
Die Ergebnisse der kinctisehen Analyse bent und die Messung schwacher und 3-540-52379-0, 1990.
werden z.T. mit solchen aus anderen rasch abklingender Fluoreszcnzspek- K. Yoshihara, N. Suzuki, G. Har-
Untersuchungen vcrglichen. trer,,. Die Autoren haben besonders zur bottle, Y. Ito, J. I. Kim, R. Stumpe, R.

3. Excited State Reactivity and Molecular mel~technischen Seite viele Beitrdge ge- Klenze: Chemical Applications ofVNclear
Topology Relationships in Chromo- eite. Deraengenie sind idistemt Probes, Vol. 57, aus der Reihe: Topics in
phorically Substituted Anthracenes, Atklzsmngfftudikter. Current Chemistry, Springer-Verlag, Ber-
von H. D. Becker, Chalmers University Fir cinige Reaktionsschritte wird emn lin, Heidelberg, New York ISBN 3-540-
Gothenburg, Schweden, 88 Seiten, 37 konsistentes Modell vorgeschlagen. 52423-1, 1990.
Abb., 30 Tab., ISO Ref. 5. Photochemical Mechanisms in Single A. S. Mikhailov: Foundations of Syn-
Der Artikel ist mm Stil von J. B. Birks' Crystals: FTIR Studies of Diacyl Per- ergetics I - Distributed Active Systems,
,,Photophysics of Aromatic Molecules" oxides, von M. D. Hollingsworth, Un- Springer-Verlag, Berlin, Heidelberg, New
gehalten. Er enthiilt Absorptions- und iversity of Alberta, Canada, und J. M. York, ISBN 3-540-52775-3, 1990.
Fluoreszenzspektren und Tabellen mit McBride, Yale University, New Haven, V. 1. Minkin, B. Ya. Sinikin, R. M.
Lumineszenz- und Photoreaktions- USA; 1O0 Seiten, 35 Abb. 99 Ref. Minyaev: Quanum Chemistry of Organic
Quantenausbeuten in verschiedcenn Dieses Kapitel ist als ,Review" gcdacht, Compounds - Mfechanisins of Reactions,
L6sungsmittcln. Es handelt sich umn nicht allgemein fiber allc neucren phio- Springer-Verlag, Berlin, Heidelberg, New
fiber 100 meist unpublizierte, 9-sub- tochiemischen Reaktionen in organi- York, ISBN 3-540-52530-0, 1990.
stituierte Anthracene. Substituenten schen Kristallen, sondern fiber cine spe- H. Kaesche: Die Korrosion der Metalle,
sind it-Elektronensysteme mit felilender zielle Methodik, ihre Leistungsihigkeit 3. Auflage, Springer- Verlag, Berlin, Hei-
oder sterisch behinderter oder voller nt- und die damit mm Verglcich zu anderen delberg, New~ York, ISBN 3-540-51569-0,
Konjugation zum Anthracen. Nicht be- Techniken zu gewinnende Information. 1990.
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